login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A245835
E.g.f.: exp( x*(2 + exp(3*x)) ).
3
1, 3, 15, 108, 945, 9558, 109917, 1412316, 19959777, 306805482, 5087064789, 90370321704, 1710170426097, 34308056537550, 726612812416269, 16188742781216892, 378244417385086785, 9242436410233527762, 235609985190361119525, 6252379688953421699760, 172380307421633200750161
OFFSET
0,2
FORMULA
O.g.f.: Sum_{n>=0} x^n / (1 - (3*n+2)*x)^(n+1).
a(n) = Sum_{k=0..n} binomial(n,k) * (3*k+2)^(n-k) for n>=0.
a(n) ~ exp((n+6*r^2)/(1+3*r)) * n! / (r^n*sqrt(2*Pi*(-6*r^2*(2+3*r) + n*(1+9*r+9*r^2)) / (1+3*r))), where r is the root of the equation r*(2 + (1+3*r)*exp(3*r)) = n. - Vaclav Kotesovec, Aug 03 2014
(a(n)/n!)^(1/n) ~ 3*exp(1/(2*LambertW(sqrt(3*n)/2))) / (2*LambertW(sqrt(3*n)/2)). - Vaclav Kotesovec, Aug 06 2014
EXAMPLE
E.g.f.: E(x) = 1 + 3*x + 15*x^2/2! + 108*x^3/3! + 945*x^4/4! + 9558*x^5/5! +...
where E(x) = exp(2*x) * exp(x*exp(3*x)).
O.g.f.: A(x) = 1 + 3*x + 15*x^2 + 108*x^3 + 945*x^4 + 9558*x^5 + 109917*x^6 +...
where
A(x) = 1/(1-2*x) + x/(1-5*x)^2 + x^2/(1-8*x)^3 + x^3/(1-11*x)^4 + x^4/(1-14*x)^5 +...
MATHEMATICA
Table[Sum[Binomial[n, k] * (3*k+2)^(n-k), {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Aug 03 2014 *)
With[{nn=20}, CoefficientList[Series[Exp[x(2+Exp[3x])], {x, 0, nn}], x] Range[0, nn]!] (* Harvey P. Dale, Oct 06 2015 *)
PROG
(PARI) {a(n)=local(A=1); A=exp( x*(2 + exp(3*x +x*O(x^n))) ); n!*polcoeff(A, n)}
for(n=0, 30, print1(a(n), ", "))
(PARI) {a(n)=local(A=1); A=sum(k=0, n, x^k/(1 - (3*k+2)*x +x*O(x^n))^(k+1)); polcoeff(A, n)}
for(n=0, 30, print1(a(n), ", "))
(PARI) {a(n)=sum(k=0, n, (3*k+2)^(n-k)*binomial(n, k))}
for(n=0, 30, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Aug 02 2014
STATUS
approved