login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A090351
G.f. satisfies A^3 = BINOMIAL(A^2).
7
1, 1, 3, 15, 108, 1032, 12388, 179572, 3052986, 59555338, 1310677726, 32114051862, 866766965308, 25547102523604, 816335926158372, 28107705687291892, 1037367351120788551, 40852168787823027351, 1709792654612819858341
OFFSET
0,3
COMMENTS
In general, if A^n = BINOMIAL(A^(n-1)), then for all integer m>0 there exists an integer sequence B such that B^d = BINOMIAL(A^m) where d=gcd(m+1,n). Also, coefficients of A(k*x)^n = k-th binomial transform of coefficients in A(k*x)^(n-1) for all k>0.
LINKS
FORMULA
G.f. satisfies: A(x)^3 = A(x/(1-x))^2/(1-x).
a(n) ~ (n-1)! / (6 * (log(3/2))^(n+1)). - Vaclav Kotesovec, Nov 18 2014
O.g.f. A(x) = exp( Sum_{n >= 1} b(n)*x^n/n ), where b(n) = Sum_{k = 1..n} k!*Stirling2(n,k)*2^(k-1) = A050351(n) = 1/2*A004123(n+1) for n >= 1. - Peter Bala, May 26 2015
EXAMPLE
A^3 = BINOMIAL(A090352), since A090352=A^2.
MATHEMATICA
nmax = 18; sol = {a[0] -> 1};
Do[A[x_] = Sum[a[k] x^k, {k, 0, n}] /. sol; eq = CoefficientList[A[x]^3 - A[x/(1 - x)]^2/(1 - x) + O[x]^(n + 1), x] == 0 /. sol; sol = sol ~Join~ Solve[eq][[1]], {n, 1, nmax}];
sol /. Rule -> Set;
a /@ Range[0, nmax] (* Jean-François Alcover, Nov 02 2019 *)
With[{m=40}, CoefficientList[Series[Exp[Sum[Sum[2^(j-1)*j!* StirlingS2[k, j], {j, k}]*x^k/k, {k, m+1}]], {x, 0, m}], x]] (* G. C. Greubel, Jun 08 2023 *)
PROG
(PARI) {a(n)=local(A); if(n<1, 0, A=1+x+x*O(x^n); for(k=1, n, B=subst(A^2, x, x/(1-x))/(1-x)+x*O(x^n); A=A-A^3+B); polcoeff(A, n, x))}
(Magma)
m:=40;
f:= func< n, x | Exp((&+[(&+[2^(j-1)*Factorial(j)* StirlingSecond(k, j)*x^k/k: j in [1..k]]): k in [1..n+2]])) >;
R<x>:=PowerSeriesRing(Rationals(), m+1); // A090351
Coefficients(R!( f(m, x) )); // G. C. Greubel, Jun 08 2023
(SageMath)
m=50
def f(n, x): return exp(sum(sum(2^(j-1)*factorial(j)* stirling_number2(k, j)*x^k/k for j in range(1, k+1)) for k in range(1, n+2)))
def A090351_list(prec):
P.<x> = PowerSeriesRing(QQ, prec)
return P( f(m, x) ).list()
A090351_list(m-9) # G. C. Greubel, Jun 08 2023
KEYWORD
nonn,easy
AUTHOR
Paul D. Hanna, Nov 26 2003
STATUS
approved