login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A090352
Satisfies A^3 = BINOMIAL(A)^2, where A = A090351^2.
5
1, 2, 7, 36, 255, 2370, 27713, 393352, 6582068, 126888632, 2767912036, 67362737168, 1808596304964, 53083358012760, 1690443996202428, 58039582729688320, 2136931230333535178, 83981145793974066484
OFFSET
0,2
COMMENTS
See comments in A090351.
LINKS
FORMULA
G.f. satisfies: A(x)^3 = A(x/(1-x))^2/(1-x)^2.
From Peter Bala, May 26 2015: (Start)
O.g.f. A(x) = exp( Sum_{n >= 1} b(n)*x^n/n ), where b(n) = Sum_{k = 1..n} k!*Stirling2(n,k)*2^k = A004123(n+1) = 2*A050351(n) for n >= 1. Cf. A084785.
BINOMIAL(A(x)) = exp( Sum_{n >= 1} c(n)*x^n/n ) where c(n) = (-1)^n*Sum_{k = 1..n} k!*Stirling2(n,k)*(-3)^k = A201339(n) = 3*A050351(n) for n >= 1.
A(x) = B(x)^2 and BINOMIAL(A(x)) = B(x)^3 where B(x) = 1 + x + 3*x^2 + 15*x^3 + 108*x^4 + ... is the o.g.f. for A090351. See also A019538. (End)
MATHEMATICA
nmax = 17; sol = {a[0] -> 1};
Do[A[x_] = Sum[a[k] x^k, {k, 0, n}] /. sol; eq = CoefficientList[A[x]^3 - A[x/(1 - x)]^2/(1 - x)^2 + O[x]^(n + 1), x] == 0 /. sol; sol = sol ~Join~ Solve[eq][[1]], {n, 1, nmax}];
sol /. Rule -> Set;
a /@ Range[0, nmax] (* Jean-François Alcover, Nov 02 2019 *)
PROG
(PARI) {a(n)=local(A); if(n<1, 0, A=1+x+x*O(x^n); for(k=1, n, B=subst(A, x, x/(1-x))/(1-x)+x*O(x^n); A=A-A^3+B^2); polcoeff(A, n, x))}
(Magma)
m:=40;
f:= func< n, x | Exp((&+[(&+[2^j*Factorial(j)*StirlingSecond(k, j)*x^k/k: j in [1..k]]): k in [1..n+2]])) >;
R<x>:=PowerSeriesRing(Rationals(), m+1); // A090352
Coefficients(R!( f(m, x) )); // G. C. Greubel, Jul 07 2023
(SageMath)
m=50
def f(n, x): return exp(sum(sum(2^j*factorial(j)*stirling_number2(k, j)*x^k/k for j in range(1, k+1)) for k in range(1, n+2)))
def A090352_list(prec):
P.<x> = PowerSeriesRing(QQ, prec)
return P( f(m, x) ).list()
A090352_list(m-9) # G. C. Greubel, Jul 07 2023
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Paul D. Hanna, Nov 26 2003
STATUS
approved