login
A366180
G.f. A(x) satisfies A(x) = 1/(1 - x)^2 + x*A(x)^3/(1 - x)^3.
2
1, 3, 15, 109, 909, 8184, 77626, 764226, 7735878, 80011063, 841875232, 8983175079, 96977392945, 1057262750608, 11623867926024, 128730566729686, 1434752590885174, 16080839356274157, 181135636330594960, 2049430159361529977, 23280997677471432102
OFFSET
0,2
FORMULA
a(n) = Sum_{k=0..n} binomial(n+6*k+1,n-k) * binomial(3*k,k)/(2*k+1).
PROG
(PARI) a(n) = sum(k=0, n, binomial(n+6*k+1, n-k)*binomial(3*k, k)/(2*k+1));
CROSSREFS
Partial sums give A366182.
Sequence in context: A362354 A090351 A136221 * A153305 A110328 A217061
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Oct 03 2023
STATUS
approved