login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = coefficient of x^n*y^(n+1)/n! in (1/2) * log( Sum_{n>=0} (n^2 + 3*n*y + 2*y^2)^n * x^n/n! ).
4

%I #13 Mar 21 2024 04:59:19

%S 1,6,93,2448,92505,4589568,283008621,20903023872,1800986581521,

%T 177455695795200,19690717755237309,2430478269127673856,

%U 330392930155527272553,49053029845102480576512,7898602773992589665290125,1371137549213022697047785472,255275516636592894833768588961

%N a(n) = coefficient of x^n*y^(n+1)/n! in (1/2) * log( Sum_{n>=0} (n^2 + 3*n*y + 2*y^2)^n * x^n/n! ).

%H Paul D. Hanna, <a href="/A359928/b359928.txt">Table of n, a(n) for n = 1..200</a>

%F E.g.f. A(x) = Sum_{n>=1} a(n) * x^n/n! may be defined by the following.

%F (1) a(n) = [x^n*y^(n+1)/n!] (1/2)*log( Sum_{n>=0} (n + y)^n*(n + 2*y)^n *x^n/n! ).

%F (2) A(x) = lim_{N->oo} (1/N)*log( Sum_{n>=0} (N + n)^n*(N + 2*n)^n * (x/N)^n/n! ).

%F a(n) ~ c * d^n * n! / n^(5/2), where d = 12.7029497597456784744445675253711147535742245945208995646083627... and c = 0.15440395598650604464793307483290467035754174771895993579108... - _Vaclav Kotesovec_, Mar 21 2024

%e E.g.f.: A(x) = x + 6*x^2/2! + 93*x^3/3! + 2448*x^4/4! + 92505*x^5/5! + 4589568*x^6/6! + 283008621*x^7/7! + 20903023872*x^8/8! + 1800986581521*x^9/9! + 177455695795200*x^10/10! + ...

%e Exponentiation yields the e.g.f. of A319147:

%e exp(A(x)) = 1 + x + 7*x^2/2! + 112*x^3/3! + 2965*x^4/4! + 111856*x^5/5! + 5528419*x^6/6! + 339433984*x^7/7! + 24965493865*x^8/8! + 2142654088960*x^9/9! + ... + A319147(n)*x^n/n! + ...

%e which equals the limit

%e exp(A(x)) = lim_{N->oo} [ Sum_{n>=0} (N^2 + 3*N*n + 2*n^2)^n * (x/N)^n/n! ]^(1/N).

%e RELATED SEQUENCES.

%e a(n) is divisible by n where a(n)/n begins:

%e [1, 3, 31, 612, 18501, 764928, 40429803, 2612877984, 200109620169, ...].

%o (PARI) {a(n) = (1/2) * n! * polcoeff( polcoeff( log( sum(m=0, n+1, (m + y)^m*(m + 2*y)^m *x^m/m! ) +x*O(x^n) ), n, x), n+1, y)}

%o for(n=1, 30, print1(a(n), ", "))

%Y Cf. A359927, A319834, A318634.

%K nonn

%O 1,2

%A _Paul D. Hanna_, Jan 20 2023