login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Sum of squares of coefficients in full expansion of (z1+z2+...+zn)^n.
8

%I #43 Jul 10 2023 03:43:02

%S 1,1,6,93,2716,127905,8848236,844691407,106391894904,17091486402849,

%T 3410496772665940,827540233598615691,239946160014513220896,

%U 81932406267721802925925,32541656017173091541743368,14874686717916861528415671285,7753005946480818323895940923376

%N Sum of squares of coefficients in full expansion of (z1+z2+...+zn)^n.

%C Two samples of size n are taken from an urn containing infinitely many marbles of n distinct colors. a(n)/n^(2*n) is the probability that the two samples match. That is, they contain the same number of each color of marbles without regard to order. - _Geoffrey Critzer_, Apr 19 2014

%H Alois P. Heinz, <a href="/A033935/b033935.txt">Table of n, a(n) for n = 0..237</a>

%F a(n) is coefficient of x^n in expansion of n!^2*(1 + x/1!^2 + x^2/2!^2 + x^3/3!^2 + ... + x^n/n!^2)^n. - _Vladeta Jovovic_, Jun 09 2000

%F a(n) ~ c * d^n * (n!)^2 / sqrt(n), where d = 2.1024237701057210364324371415246345951600138303179762223318873762632384990..., c = 0.487465475752598098146353111500372156824276600165331887960705498284416... - _Vaclav Kotesovec_, Jul 29 2014, updated Jul 10 2023

%F a(n) = n!^2 * [z^n] hypergeom([], [1], z)^n. - _Peter Luschny_, May 31 2017

%p b:= proc(n, i) option remember; `if`(n=0 or i=1, 1,

%p add(b(n-j, i-1)*binomial(n, j)^2, j=0..n))

%p end:

%p a:= n-> b(n$2):

%p seq(a(n), n=0..20); # _Alois P. Heinz_, Jul 21 2014

%p A033935:= proc(n) series(hypergeom([],[1],z)^n, z=0, n+1): n!^2*coeff(%,z,n) end: seq(A033935(n), n=0..16); # _Peter Luschny_, May 31 2017

%t Table[nn=n;n!^2 Coefficient[Series[(Sum[x^k/k!^2,{k,0,nn}])^n,{x,0,nn}],x^n],{n,1,20}] (* _Geoffrey Critzer_, Apr 19 2014 *)

%t Flatten[{1,Table[n!^2*Coefficient[Series[BesselI[0,2*Sqrt[x]]^n,{x,0,n}],x^n],{n,1,20}]}] (* _Vaclav Kotesovec_, Jul 29 2014 *)

%t Table[SeriesCoefficient[HypergeometricPFQ[{},{1},x]^n, {x,0,n}] n!^2, {n,0,16}] (* _Peter Luschny_, May 31 2017 *)

%Y Column k=2 of A245397.

%Y Main diagonal of A287316.

%Y Cf. A364116.

%K nonn,easy

%O 0,3

%A _Warren D. Smith_, Dec 11 1999

%E More terms from _James A. Sellers_, Jun 01 2000 and _Vladeta Jovovic_, Jun 05 2000

%E a(0)=1 inserted by _Alois P. Heinz_, Jul 21 2014