login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A287314 Triangle read by rows, the coefficients of the polynomials generating the columns of A287316. 6
1, 0, 1, 0, -1, 2, 0, 4, -9, 6, 0, -33, 82, -72, 24, 0, 456, -1225, 1250, -600, 120, 0, -9460, 27041, -30600, 17700, -5400, 720, 0, 274800, -826336, 1011017, -661500, 249900, -52920, 5040, 0, -10643745, 33391954, -43471624, 31149496, -13524000, 3622080, -564480, 40320 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

0,6

LINKS

Table of n, a(n) for n=0..44.

FORMULA

Sum_{k=0..n} abs(T(n,k)) = A000275(n) = A212855_row(2).

EXAMPLE

Triangle starts:

[0] 1

[1] 0,      1

[2] 0,     -1,       2

[3] 0,      4,      -9,       6

[4] 0,    -33,      82,     -72,      24

[5] 0,    456,   -1225,    1250,    -600,    120

[6] 0,  -9460,   27041,  -30600,   17700,  -5400,    720

[7] 0, 274800, -826336, 1011017, -661500, 249900, -52920, 5040

...

For example let p4(x) = -33*x + 82*x^2 - 72*x^3 + 24*x^4 then p4(n) = A169712(n).

MAPLE

A287314_row := proc(n) local k; sum(z^k/k!^2, k = 0..infinity);

series(%^x, z=0, n+1): n!^2*coeff(%, z, n); seq(coeff(%, x, k), k=0..n) end:

for n from 0 to 8 do print(A287314_row(n)) od;

A287314_poly := proc(n) local k, x; sum(z^k/k!^2, k = 0..infinity);

series(%^x, z=0, n+1): unapply(n!^2*coeff(%, z, n), x) end:

for n from 0 to 7 do A287314_poly(n) od;

CROSSREFS

Cf. A287316, A000384 (p2), A169711 (p3), A169712 (p4), A169713 (p5).

Cf. A000275(n), A212855.

Sequence in context: A195287 A070015 A021492 * A077119 A002938 A111938

Adjacent sequences:  A287311 A287312 A287313 * A287315 A287316 A287317

KEYWORD

sign,tabl

AUTHOR

Peter Luschny, May 27 2017

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 17 21:37 EDT 2019. Contains 328134 sequences. (Running on oeis4.)