login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A287315
Triangle read by rows, (Sum_{k=0..n} T[n,k]*x^k) / (1-x)^(n+1) are generating functions of the columns of A287316.
2
1, 0, 1, 0, 1, 3, 0, 1, 16, 19, 0, 1, 65, 299, 211, 0, 1, 246, 3156, 7346, 3651, 0, 1, 917, 28722, 160322, 237517, 90921, 0, 1, 3424, 245407, 2864912, 9302567, 9903776, 3081513, 0, 1, 12861, 2041965, 46261609, 288196659, 632274183, 520507423, 136407699
OFFSET
0,6
FORMULA
Sum_{k=0..n} T(n,k) = A001044(n).
EXAMPLE
Triangle starts:
0: [1]
1: [0, 1]
2: [0, 1, 3]
3: [0, 1, 16, 19]
4: [0, 1, 65, 299, 211]
5: [0, 1, 246, 3156, 7346, 3651]
6: [0, 1, 917, 28722, 160322, 237517, 90921]
7: [0, 1, 3424, 245407, 2864912, 9302567, 9903776, 3081513]
...
Let q4(x) = (x + 65*x^2 + 299*x^3 + 211*x^4) / (1-x)^5 then the coefficients of the series expansion of q4 give A169712, which is column 4 of A287316.
MAPLE
Delta := proc(a, n) local del, A, u;
A := [seq(a(j), j=0..n+1)]; del := (a, k) -> `if`(k=0, a(0), a(k)-a(k-1));
for u from 0 to n do A := [seq(del(k -> A[k+1], j), j=0..n)] od end:
A287315_row := n -> Delta(A287314_poly(n), n):
for n from 0 to 7 do A287315_row(n) od;
A287315_eulerian := (n, x) -> add(A287315_row(n)[k+1]*x^k, k=0..n)/(1-x)^(n+1):
for n from 0 to 4 do A287315_eulerian(n, x) od;
CROSSREFS
T(n,n) = A000275(n).
Cf. A192721 (variant), A001044, A287314, A287316.
Sequence in context: A334823 A279031 A304336 * A350212 A256311 A022695
KEYWORD
nonn,tabl
AUTHOR
Peter Luschny, May 29 2017
STATUS
approved