Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #13 Jan 10 2018 20:33:26
%S 1,0,1,0,1,3,0,1,16,19,0,1,65,299,211,0,1,246,3156,7346,3651,0,1,917,
%T 28722,160322,237517,90921,0,1,3424,245407,2864912,9302567,9903776,
%U 3081513,0,1,12861,2041965,46261609,288196659,632274183,520507423,136407699
%N Triangle read by rows, (Sum_{k=0..n} T[n,k]*x^k) / (1-x)^(n+1) are generating functions of the columns of A287316.
%F Sum_{k=0..n} T(n,k) = A001044(n).
%e Triangle starts:
%e 0: [1]
%e 1: [0, 1]
%e 2: [0, 1, 3]
%e 3: [0, 1, 16, 19]
%e 4: [0, 1, 65, 299, 211]
%e 5: [0, 1, 246, 3156, 7346, 3651]
%e 6: [0, 1, 917, 28722, 160322, 237517, 90921]
%e 7: [0, 1, 3424, 245407, 2864912, 9302567, 9903776, 3081513]
%e ...
%e Let q4(x) = (x + 65*x^2 + 299*x^3 + 211*x^4) / (1-x)^5 then the coefficients of the series expansion of q4 give A169712, which is column 4 of A287316.
%p Delta := proc(a, n) local del, A, u;
%p A := [seq(a(j), j=0..n+1)]; del := (a, k) -> `if`(k=0, a(0), a(k)-a(k-1));
%p for u from 0 to n do A := [seq(del(k -> A[k+1], j), j=0..n)] od end:
%p A287315_row := n -> Delta(A287314_poly(n), n):
%p for n from 0 to 7 do A287315_row(n) od;
%p A287315_eulerian := (n,x) -> add(A287315_row(n)[k+1]*x^k,k=0..n)/(1-x)^(n+1):
%p for n from 0 to 4 do A287315_eulerian(n,x) od;
%Y T(n,n) = A000275(n).
%Y Cf. A192721 (variant), A001044, A287314, A287316.
%K nonn,tabl
%O 0,6
%A _Peter Luschny_, May 29 2017