login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A334823 Triangle, read by rows, of Lambert's denominator polynomials related to convergents of tan(x). 2
1, 1, 0, 3, 0, -1, 15, 0, -6, 0, 105, 0, -45, 0, 1, 945, 0, -420, 0, 15, 0, 10395, 0, -4725, 0, 210, 0, -1, 135135, 0, -62370, 0, 3150, 0, -28, 0, 2027025, 0, -945945, 0, 51975, 0, -630, 0, 1, 34459425, 0, -16216200, 0, 945945, 0, -13860, 0, 45, 0, 654729075, 0, -310134825, 0, 18918900, 0, -315315, 0, 1485, 0, -1 (list; table; graph; refs; listen; history; text; internal format)
OFFSET
0,4
COMMENTS
Lambert's numerator polynomials related to convergents of tan(x), g(n, x), are given in A334824.
LINKS
J.-H. Lambert, Mémoire sur quelques propriétés remarquables des quantités transcendantes et logarithmiques (Memoir on some properties that can be traced from circular transcendent and logarithmic quantities), Histoire de l’Académie royale des sciences et belles-lettres (1761), Berlin. See also.
FORMULA
Equals the coefficients of the polynomials, f(n, x), defined by: (Start)
f(n, x) = Sum_{k=0..floor(n/2)} ((-1)^k*(2*n-2*k)!/((2*k)!*(n-2*k)!))*(x/2)^(n-2*k).
f(n, x) = ((2*n)!/n!)*(x/2)^n*Hypergeometric2F3(-n/2, (1-n)/2; 1/2, -n, -n+1/2; -1/x^2).
f(n, x) = ((-i)^n/2)*(y(n, i*x) + (-1)^n*y(n, -i*x)), where y(n, x) are the Bessel Polynomials.
f(n, x) = (2*n-1)*x*f(n-1, x) - f(n-2, x).
E.g.f. of f(n, x): cos((1 - sqrt(1-2*x*t))/2)/sqrt(1-2*x*t).
f(n, 1) = (-1)^n*f(n, -1) = A053983(n) = (-1)^(n+1)*A053984(-n-1) = (-1)^(n+1) * g(-n-1, 1).
f(n, 2) = (-1)^n*f(n, -2) = A053988(n+1). (End)
As a number triangle:
T(n, k) = i^k*(2*n-k)!*(1+(-1)^k)/(2^(n-k+1)*(k)!*(n-k)!), where i = sqrt(-1).
T(n, 0) = A001147(n).
EXAMPLE
Polynomials:
f(0, x) = 1;
f(1, x) = x;
f(2, x) = 3*x^2 - 1;
f(3, x) = 15*x^3 - 6*x;
f(4, x) = 105*x^4 - 45*x^2 + 1;
f(5, x) = 945*x^5 - 420*x^3 + 15*x;
f(6, x) = 10395*x^6 - 4725*x^4 + 210*x^2 - 1;
f(7, x) = 135135*x^7 - 62370*x^5 + 3150*x^3 - 28*x;
f(8, x) = 2027025*x^8 - 945945*x^6 + 51975*x^4 - 630*x^2 + 1.
Triangle of coefficients begins as:
1;
1, 0;
3, 0, -1;
15, 0, -6, 0;
105, 0, -45, 0, 1;
945, 0, -420, 0, 15, 0;
10395, 0, -4725, 0, 210, 0, -1;
135135, 0, -62370, 0, 3150, 0, -28, 0;
2027025, 0, -945945, 0, 51975, 0, -630, 0, 1.
MAPLE
T:= (n, k) -> I^k*(2*n-k)!*(1+(-1)^k)/(2^(n-k+1)*(k)!*(n-k)!);
seq(seq(T(n, k), k = 0 .. n), n = 0 .. 10);
MATHEMATICA
(* First program *)
y[n_, x_]:= Sqrt[2/(Pi*x)]*E^(1/x)*BesselK[-n -1/2, 1/x];
f[n_, k_]:= Coefficient[((-I)^n/2)*(y[n, I*x] + (-1)^n*y[n, -I*x]), x, k];
Table[f[n, k], {n, 0, 10}, {k, n, 0, -1}]//Flatten
(* Second program *)
Table[ I^k*(2*n-k)!*(1+(-1)^k)/(2^(n-k+1)*(k)!*(n-k)!), {n, 0, 10}, {k, 0, n}]//Flatten
PROG
(Magma)
C<i> := ComplexField();
T:= func< n, k| Round( i^k*Factorial(2*n-k)*(1+(-1)^k)/(2^(n-k+1)*Factorial(k)*Factorial(n-k)) ) >;
[T(n, k): k in [0..n], n in [0..10]];
(Sage) [[ i^k*factorial(2*n-k)*(1+(-1)^k)/(2^(n-k+1)*factorial(k)*factorial(n-k)) for k in (0..n)] for n in (0..10)]
CROSSREFS
Columns k: A001147 (k=0), A001879 (k=2), A001880 (k=4), A038121 (k=6).
Sequence in context: A277410 A368054 A289546 * A279031 A304336 A287315
KEYWORD
tabl,sign
AUTHOR
G. C. Greubel, May 12 2020, following a suggestion from Michel Marcus
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 24 22:17 EDT 2024. Contains 371964 sequences. (Running on oeis4.)