login
A334822
Palindromes k such that k*sod(k) and k/sod(k) are both palindromes, where sod(k) denotes the sum of digits of k (A007953).
1
1, 2, 3, 144689999986441, 154698898896451, 226589999985622, 234779999977432, 243788999887342, 244788898887442, 253698898896352, 254689878986452, 254788878887452, 254797797797452, 333878999878333, 334878898878433, 335598898895533, 336589878985633, 336688878886633
OFFSET
1,2
COMMENTS
Intersection of A002113 and A229549 and A334416. Palindromes in A334533.
For the first 10000 terms, most of them have digit sum 91. The only terms a(n) for n <= 10000 for which the digit sum is not 91 are 1, 2, 3 and a(1076) = 426666666666666624. - Chai Wah Wu, May 15 2020
EXAMPLE
35479654545697453 is a palindrome whose sum of digits is 91. 35479654545697453/91 = 389886313688983 and 35479654545697453*91 = 3228648563658468223 which are both palindromes. So 35479654545697453 is a term.
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Chai Wah Wu, May 12 2020
STATUS
approved