login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A053987
Numerators of successive convergents to tan(1/2) using continued fraction 1/(2-1/(6-1/(10-1/(14-1/(18-1/(22-1/(26-1/30-...))))))).
5
1, 6, 59, 820, 14701, 322602, 8372951, 250865928, 8521068601, 323549740910, 13580568049619, 624382580541564, 31205548459028581, 1684475234207001810, 97668358035547076399, 6053753722969711734928, 399450077357965427428849, 27955451661334610208284502
OFFSET
1,2
LINKS
S. Janson, A divergent generating function that can be summed and analysed analytically, Discrete Mathematics and Theoretical Computer Science; 2010, Vol. 12, No. 2, 1-22.
FORMULA
a(n) = Sum_{k=0..floor((n-1)/2)} (-1)^k*(2*n-2*k-1)!/((n-2*k-1)! * (2*k+1)!). - Benoit Cloitre, Jan 03 2006
E.g.f.: 1-cos(x*C(x)), C(x)=(1-sqrt(1-4*x))/(2*x) (A000108). - Vladimir Kruchinin, Aug 10 2010
From Peter Bala, Aug 01 2013, (Start)
a(n+1) = (4*n+2)*a(n) - a(n-1) with a(0) = 0 and a(1) = 1.
a(n) = Sum_{k = 0..floor((n-1)/2)} (-1)^k*4^(n-2*k-1)*(n-2*k-1)!*binomial(n-k-1, k)*binomial(n-k-1/2, k+1/2), see A058798. (End)
a(n) ~ sin(1/2) * 2^(2*n+1/2) * n^n / exp(n). - Vaclav Kotesovec, Feb 25 2014
a(n) = 4^n*Gamma(n+1/2)*hypergeometric([1/2-n/2,1-n/2], [3/2,1/2-n,1-n], -1/4)/sqrt(4*Pi). - Peter Luschny, Sep 10 2014
MAPLE
A053987 := n -> local k; add((-1)^k*(2*n-2*k-1)!/((n-2*k-1)!*(2*k+1)!), k = 0..floor((n-1)/2)); seq(A053987(n), n = 1..20); # G. C. Greubel, May 17 2020
MATHEMATICA
Rest[CoefficientList[Series[Sin[(1-Sqrt[1-4*x])/2]/Sqrt[1-4*x], {x, 0, 20}], x] * Range[0, 20]!] (* Vaclav Kotesovec, Feb 25 2014 *)
PROG
(PARI) a(n)=sum(k=0, floor((n-1)/2), (-1)^k*(2*n-2*k-1)!/(n-2*k-1)!/(2*k+1)!) \\ Benoit Cloitre, Jan 03 2006
(Sage)
def A053987(n):
return 4^n*gamma(n+1/2)*hypergeometric([1/2-n/2, 1-n/2], [3/2, 1/2-n, 1-n], -1/4)/sqrt(4*pi)
[round(A053987(n).n(100)) for n in (1..18)] # Peter Luschny, Sep 10 2014
(Magma)
A053987:= func< n| &+[(-1)^k*Factorial(2*n-2*k-1)/(Factorial(n-2*k-1)* Factorial(2*k+1)): k in [0..Floor((n-1)/2)]] >;
[A053987(n) : n in [1..20]]; // G. C. Greubel, May 17 2020
CROSSREFS
KEYWORD
nonn,frac,easy
AUTHOR
Vladeta Jovovic, Apr 03 2000
EXTENSIONS
a(16)-a(17) from Wesley Ivan Hurt, Feb 28 2014
STATUS
approved