login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A075136
Numerator of the generalized harmonic number H(n,4,1).
5
1, 6, 59, 812, 14389, 104038, 534113, 15837352, 177575597, 6681333014, 278042982799, 93928709068, 665521987201, 35665695484178, 684591747070657, 42155877944972752, 42527303541794647, 986175536059084606
OFFSET
1,2
COMMENTS
The denominators are in A051539. See A075135 for more details.
Numerators of the partial sums of the divergent series 1/3 + 1/7 + 1/11 + . . 1/(4n-1).
FORMULA
Sum 1/a(n) = 1.111939597509272224249... - Cino Hilliard, Dec 21 2003
MATHEMATICA
a=4; b=1; maxN=20; s=0; Numerator[Table[s+=1/(a n + b), {n, 0, maxN-1}]]
Numerator[Accumulate[1/Range[1, 69, 4]]] (* Harvey P. Dale, Dec 15 2014 *)
PROG
(PARI) sumrecip(n, a, b) = { s=0; default(realprecision, n); forstep(j=b, n, a, s=s+1/j; print1(numerator(s)", ") ) }
CROSSREFS
Sequence in context: A256035 A296169 A089153 * A024382 A053987 A024270
KEYWORD
easy,frac,nonn
AUTHOR
T. D. Noe, Sep 04 2002
STATUS
approved