|
|
A075133
|
|
Indices of double-safe primes: p=prime(n) is double-safe: q=(p-1)/2 & r=(q-1)/2 are both prime (and q is safe).
|
|
1
|
|
|
5, 9, 15, 39, 72, 128, 228, 309, 417, 562, 567, 657, 740, 762, 779, 789, 927, 959, 967, 981, 1214, 1315, 1364, 1632, 1650, 1667, 1785, 1825, 2295, 2425, 2442, 2607, 2709, 2721, 2840, 3085, 3114, 3194, 3401, 3812, 3911, 4428, 4472, 4479, 4645, 4753, 4780
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
prime p is safe if q=(p-1)/2 is prime, so p is double safe if also r=(q-1)/2 is prime. Safe primes are in A005385, indices of triple-safe primes are in A075314
|
|
LINKS
|
|
|
EXAMPLE
|
72 is a member because p(72)=359, q=(p-1)/2=179 and r=(q-1)2=89 are primes.
|
|
MATHEMATICA
|
se2=Select[(Select[(Prime[Range[20000]]-1)/2, PrimeQ]-1)/2, PrimeQ]; Map[PrimePi, Map[2(2*#+1)+1&, se2]]
dspQ[n_]:=Module[{q=(n-1)/2}, AllTrue[{q, (q-1)/2}, PrimeQ]]; Position[ Prime[ Range[5000]], _?(dspQ[#]&)]//Flatten (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Apr 23 2016 *)
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|