login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A304336
T(n, k) = Sum_{j=0..k} (-1)^j*binomial(2*k, j)*(k - j)^(2*n)/(k!)^2, triangle read by rows, n >= 0 and 0 <= k <= n.
5
1, 0, 1, 0, 1, 3, 0, 1, 15, 10, 0, 1, 63, 140, 35, 0, 1, 255, 1470, 1050, 126, 0, 1, 1023, 14080, 21945, 6930, 462, 0, 1, 4095, 130130, 400400, 252252, 42042, 1716, 0, 1, 16383, 1184820, 6861855, 7747740, 2438436, 240240, 6435
OFFSET
0,6
FORMULA
T(n, k) = A304330(n, k)/(k!)^2.
T(n, k) = A304334(n, k)/k!.
EXAMPLE
Triangle starts:
[0] 1;
[1] 0, 1;
[2] 0, 1, 3;
[3] 0, 1, 15, 10;
[4] 0, 1, 63, 140, 35;
[5] 0, 1, 255, 1470, 1050, 126;
[6] 0, 1, 1023, 14080, 21945, 6930, 462;
[7] 0, 1, 4095, 130130, 400400, 252252, 42042, 1716;
[8] 0, 1, 16383, 1184820, 6861855, 7747740, 2438436, 240240, 6435;
MAPLE
A304336 := (n, k) -> add((-1)^j*binomial(2*k, j)*(k-j)^(2*n), j=0..k)/(k!)^2:
for n from 0 to 8 do seq(A304336(n, k), k=0..n) od;
PROG
(PARI) T(n, k) = sum(j=0, k, (-1)^j*binomial(2*k, j)*(k - j)^(2*n))/(k!)^2;
tabl(nn) = for (n=0, nn, for (k=0, n, print1(T(n, k), ", ")); print); \\ Michel Marcus, May 11 2018
CROSSREFS
Row sums are A304338, T(n,n) = A088218 and A001700, T(n,n-1) ~ A002803, T(n,2) ~ A024036, T(n,3) ~ bisection of A174395.
Sequence in context: A289546 A334823 A279031 * A287315 A350212 A256311
KEYWORD
nonn,tabl
AUTHOR
Peter Luschny, May 11 2018
STATUS
approved