|
|
A304333
|
|
Number of positive integers k such that n - L(k) is a positive squarefree number, where L(k) denotes the k-th Lucas number A000204(k).
|
|
9
|
|
|
0, 1, 1, 2, 2, 3, 2, 3, 3, 3, 2, 3, 3, 5, 2, 3, 4, 5, 2, 4, 4, 4, 3, 5, 4, 4, 2, 3, 3, 5, 3, 5, 5, 5, 4, 4, 5, 4, 4, 6, 5, 6, 3, 6, 4, 5, 3, 6, 5, 6, 3, 5, 4, 5, 3, 3, 4, 6, 4, 6, 4, 7, 3, 6, 4, 6, 2, 6, 6, 6, 4, 5, 6, 4, 4, 6, 7, 6, 3, 7, 6, 6, 4, 6, 5, 7, 5, 6, 7, 8
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,4
|
|
COMMENTS
|
Conjecture: a(n) > 0 for all n > 1.
This has been verified for n up to 5*10^9.
See also A304331 for a similar conjecture involving Fibonacci numbers.
|
|
LINKS
|
Zhi-Wei Sun, Conjectures on representations involving primes, in: M. Nathanson (ed.), Combinatorial and Additive Number Theory II, Springer Proc. in Math. & Stat., Vol. 220, Springer, Cham, 2017, pp. 279-310. (See also arXiv:1211.1588 [math.NT], 2012-2017.)
|
|
EXAMPLE
|
a(2) = 1 with 2 - L(1) = 1 squarefree.
a(3) = 1 with 3 - L(1) = 2 squarefree.
a(67) = 2 with 67 - L(1) = 2*3*11 and 67 - L(7) = 2*19 both squarefree.
|
|
MAPLE
|
a := proc(n) local count, lucas, newcas;
count := 0; lucas := 1; newcas := 2;
while lucas < n do
if numtheory:-issqrfree(n - lucas) then count := count + 1 fi;
lucas, newcas := lucas + newcas, lucas;
od;
count end:
|
|
MATHEMATICA
|
f[n_]:=f[n]=LucasL[n];
tab={}; Do[r=0; k=1; Label[bb]; If[f[k]>=n, Goto[aa]]; If[SquareFreeQ[n-f[k]], r=r+1]; k=k+1; Goto[bb]; Label[aa]; tab=Append[tab, r], {n, 1, 90}]; Print[tab]
|
|
PROG
|
(PARI) A304333(n) = { my(u1=1, u2=3, old_u1, c=0); if(n<=2, n-1, while(u1<n, c+=issquarefree(n-u1); old_u1=u1; u1=u2; u2=old_u1+u2); c); }; \\ Antti Karttunen, May 13 2018
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|