login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A100198
Let f(0) = -1, f(n) = Moebius(n) = A008683(n) for n>0. Sequence gives partial sums a(n) = Sum_{ 0 <= i <= n} f(i).
1
-1, 0, -1, -2, -2, -3, -2, -3, -3, -3, -2, -3, -3, -4, -3, -2, -2, -3, -3, -4, -4, -3, -2, -3, -3, -3, -2, -2, -2, -3, -4, -5, -5, -4, -3, -2, -2, -3, -2, -1, -1, -2, -3, -4, -4, -4, -3, -4, -4, -4, -4, -3, -3, -4, -4, -3, -3, -2, -1, -2, -2, -3, -2, -2, -2, -1, -2, -3, -3, -2, -3, -4, -4, -5, -4, -4, -4, -3, -4, -5, -5, -5, -4, -5, -5, -4, -3, -2, -2, -3, -3, -2, -2, -1, 0, 1, 1, 0, 0, 0, 0, -1, -2, -3, -3
OFFSET
0,4
MAPLE
seq(abs(sum(mobius(x), x=0..a)), a=0..100);
MATHEMATICA
Accumulate[Join[{-1}, MoebiusMu[Range[110]]]] (* Harvey P. Dale, Jun 20 2017 *)
CROSSREFS
See A002321 for a better version.
Sequence in context: A375312 A081308 A070210 * A164996 A216195 A304333
KEYWORD
sign
AUTHOR
Jorge Coveiro, Dec 27 2004
STATUS
approved