login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A002803
a(n) = (2n+4)!/(4!*n!*(n+1)!).
(Formerly M4980 N2140)
7
1, 15, 140, 1050, 6930, 42042, 240240, 1312740, 6928350, 35565530, 178474296, 878850700, 4259045700, 20359174500, 96172862400, 449608131720, 2082743551350, 9569730173850, 43651400793000, 197809768856700
OFFSET
0,2
REFERENCES
C. Jordan, Calculus of Finite Differences. Budapest, 1939, p. 449.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
T. R. S. Walsh and A. B. Lehman, Counting rooted maps by genus. III: Nonseparable maps, J. Combinatorial Theory Ser. B 18 (1975), 222-259.
FORMULA
G.f.: 2F1(5/2,3;2;4x) =(1+x)/(1-4x)^(7/2). - R. J. Mathar, Aug 09 2015
a(n) = A020918(n)+A020918(n-1). - R. J. Mathar, Aug 09 2015
D-finite with recurrence n*(n+1)*a(n) -2*(n+2)*(2*n+3)*a(n-1)=0. - R. J. Mathar, Feb 08 2021
MATHEMATICA
Table[(2*n+4)!/(4!*n!*(n+1)!), {n, 0, 20}] (* Vladimir Joseph Stephan Orlovsky, Dec 13 2008 *)
CROSSREFS
Cf. A020918.
Sequence in context: A302855 A133716 A035330 * A354394 A346977 A354398
KEYWORD
nonn,easy
STATUS
approved