login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A144389
Triangle T(n,k) = n*binomial(n - 1, k) - (-1)^(n - k)*binomial(n, k), T(0,0) = 1, read by rows, 0 <= k <= n.
1
-1, 2, -1, 1, 4, -1, 4, 3, 6, -1, 3, 16, 6, 8, -1, 6, 15, 40, 10, 10, -1, 5, 36, 45, 80, 15, 12, -1, 8, 35, 126, 105, 140, 21, 14, -1, 7, 64, 140, 336, 210, 224, 28, 16, -1, 10, 63, 288, 420, 756, 378, 336, 36, 18, -1, 9, 100, 315, 960, 1050, 1512, 630, 480, 45, 20, -1
OFFSET
0,2
FORMULA
T(n,k) = [x^k] (n*(x + 1)^(n - 1) - (x - 1)^n).
Sum_{k=0..n} T(n,k) = A001787(n), n >= 1.
EXAMPLE
Triangle begins:
-1;
2, -1;
1, 4, -1;
4, 3, 6, -1;
3, 16, 6, 8, -1;
6, 15, 40, 10, 10, -1;
5, 36, 45, 80, 15, 12, -1;
8, 35, 126, 105, 140, 21, 14, -1;
7, 64, 140, 336, 210, 224, 28, 16, -1;
10, 63, 288, 420, 756, 378, 336, 36, 18, -1;
9, 100, 315, 960, 1050, 1512, 630, 480, 45, 20, -1;
...
MATHEMATICA
p[x_, n_] = -(x - 1)^n + n*(x + 1)^(n - 1);
Table[CoefficientList[p[x, n], x], {n, 0, 10}] // Flatten
PROG
(Maxima) create_list(n*binomial(n - 1, k) - (-1)^(n - k)*binomial(n, k), n , 0, 15, k, 0, n); /* Franck Maminirina Ramaharo, Jan 25 2019 */
CROSSREFS
KEYWORD
sign,easy,tabl
AUTHOR
STATUS
approved