login
A273314
Partial sums of the number of active (ON, black) cells in n-th stage of growth of two-dimensional cellular automaton defined by "Rule 643", based on the 5-celled von Neumann neighborhood.
1
1, 6, 23, 64, 137, 250, 411, 628, 909, 1262, 1695, 2216, 2833, 3554, 4387, 5340, 6421, 7638, 8999, 10512, 12185, 14026, 16043, 18244, 20637, 23230, 26031, 29048, 32289, 35762, 39475, 43436, 47653, 52134, 56887, 61920, 67241, 72858, 78779, 85012, 91565, 98446
OFFSET
0,2
COMMENTS
Initialized with a single black (ON) cell at stage zero.
REFERENCES
S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 170.
FORMULA
Conjectures from Colin Barker, May 19 2016: (Start)
a(n) = (4*n^3+12*n^2-13*n+15)/3 for n>0.
a(n) = 4*a(n-1)-6*a(n-2)+4*a(n-3)-a(n-4) for n>4.
G.f.: (1+2*x+5*x^2+4*x^3-4*x^4) / (1-x)^4.
(End)
MATHEMATICA
CAStep[rule_, a_]:=Map[rule[[10-#]]&, ListConvolve[{{0, 2, 0}, {2, 1, 2}, {0, 2, 0}}, a, 2], {2}];
code=643; stages=128;
rule=IntegerDigits[code, 2, 10];
g=2*stages+1; (* Maximum size of grid *)
a=PadLeft[{{1}}, {g, g}, 0, Floor[{g, g}/2]]; (* Initial ON cell on grid *)
ca=a;
ca=Table[ca=CAStep[rule, ca], {n, 1, stages+1}];
PrependTo[ca, a];
(* Trim full grid to reflect growth by one cell at each stage *)
k=(Length[ca[[1]]]+1)/2;
ca=Table[Table[Part[ca[[n]][[j]], Range[k+1-n, k-1+n]], {j, k+1-n, k-1+n}], {n, 1, k}];
on=Map[Function[Apply[Plus, Flatten[#1]]], ca] (* Count ON cells at each stage *)
Table[Total[Part[on, Range[1, i]]], {i, 1, Length[on]}] (* Sum at each stage *)
CROSSREFS
Cf. A166147.
Sequence in context: A208598 A327794 A119712 * A281424 A005745 A332081
KEYWORD
nonn,easy
AUTHOR
Robert Price, May 19 2016
STATUS
approved