login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A213504
Principal diagonal of the convolution array A213590.
4
1, 6, 35, 138, 488, 1564, 4733, 13734, 38711, 106846, 290496, 781264, 2084753, 5531846, 14619811, 38527834, 101328712, 266119228, 698218525, 1830665830, 4797572551, 12568780126, 32920653120, 86214096768, 225758326273
OFFSET
1,2
FORMULA
a(n) = 6*a(n-1) - 10*a(n-2) - 2*a(n-3) + 15*a(n-4) - 2*a(n-5)- 8*a(n-6) + a(n-8).
G.f.: x*(1 + 9*x^2 - 10*x^3 + 7*x^4 - 2*x^5)/((1 - 3*x + x^2)*(1 - x - x^2)^3). [corrected by Georg Fischer, May 11 2019]
a(n) = Fibonacci(2*n+6) - Fibonacci(n+6) - 2*n*Fibonacci(n+3) - n^2*Fibonacci(n+1). - G. C. Greubel, Jul 06 2019
MATHEMATICA
(* First program *)
b[n_]:= n^2; c[n_]:= Fibonacci[n];
T[n_, k_]:= Sum[b[k-i] c[n+i], {i, 0, k-1}]
TableForm[Table[T[n, k], {n, 1, 10}, {k, 1, 10}]]
Flatten[Table[T[n-k+1, k], {n, 12}, {k, n, 1, -1}]] (* A213590 *)
r[n_]:= Table[T[n, k], {k, 40}] (* columns of antidiagonal triangle *)
Table[T[n, n], {n, 1, 40}] (* A213504 *)
s[n_]:= Sum[T[i, n+1-i], {i, 1, n}]
Table[s[n], {n, 1, 50}] (* A213557 *)
(* Second program *)
With[{F = Fibonacci}, Table[F[2*n+6] -F[n+6] -2*n*F[n+3] -n^2*F[n+1], {n, 40}]] (* G. C. Greubel, Jul 06 2019 *)
PROG
(PARI) vector(40, n, my(f=fibonacci); f(2*n+6) - f(n+6) - 2*n*f(n+3) - n^2*f(n+1)) \\ G. C. Greubel, Jul 06 2019
(Magma) F:=Fibonacci; [F(2*n+6) -F(n+6) -2*n*F(n+3) -n^2*F(n+1): n in [1..40]]; // G. C. Greubel, Jul 06 2019
(Sage) f=fibonacci; [f(2*n+6) -f(n+6) -2*n*f(n+3) -n^2*f(n+1) for n in (1..40)] # G. C. Greubel, Jul 06 2019
(GAP) F:=Fibonacci;; List([1..40], n-> F(2*n+6) -F(n+6) -2*n*F(n+3) -n^2*F(n+1)) # G. C. Greubel, Jul 06 2019
CROSSREFS
Sequence in context: A101077 A094952 A024526 * A089581 A132657 A379628
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Jun 19 2012
STATUS
approved