login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A213506
Number of nonisomorphic 2-generator p-groups of class at most 2 and order p^n.
1
1, 1, 2, 4, 6, 8, 13, 17, 23, 31, 40, 50, 65, 79, 97, 119, 143, 169, 203, 237, 277, 323, 373, 427, 492, 558, 633, 717, 807, 903, 1014, 1128, 1254, 1392, 1539, 1695, 1870, 2050, 2246, 2458, 2682, 2918, 3178, 3446, 3734, 4042, 4366, 4706, 5075, 5455, 5860
OFFSET
0,3
LINKS
A. Ahmad, A. Magidin and R. F. Morse, Two generator p-groups of nilpotency class 2 and their conjugacy classes, Publ. Math. Debrecen 81 (2012), no. 1-2, 145-166.
C. Voll, Enumerating finite class-2-nilpotent groups on 2 generators, C. R. Math. Acad. Sci. Paris 347 (2009), no. 23-24, 1347-1350.
FORMULA
a(n) = sum_{r+s+t=n, r >= s >= t >= 0}( (t+1)+(1/2)*min{t,r-s}*(2t+1-min{t,r-s} ).
G.f.: 1/((1-x)*(1-x^2)*(1-x^3)^2*(1-x^4)). - Tani Akinari, Jun 28 2014
a(n) = floor( (n^4+26*n^3+234*n^2+(909-64*(n mod 3))*n+1701)/1728+(n+1)*(-1)^n/64 ). [Tani Akinari, Jun 28 2014 - see PARI code]
MAPLE
A213506 := proc(n)
a := 0 ;
for t from 0 to n do
for s from t to n-t do
r := n-s-t ;
if r >= s then
m := min(t, r-s) ;
a := a+t+1+m*(2*t+1-m)/2 ;
end if;
end do:
end do:
return a;
end proc:
seq(A213506(n), n=0..70) ; # R. J. Mathar, Jun 26 2012
MATHEMATICA
CoefficientList[Series[1/((1 - x)*(1 - x^2)*(1 - x^3)^2*(1 - x^4)), {x, 0, 50}], x] (* Wesley Ivan Hurt, Jun 28 2014 *)
PROG
(PARI) a(n)=floor((n^4+26*n^3+234*n^2+(909-64*(n%3))*n+1701)/1728+(n+1)*(-1)^n/64) \\ Tani Akinari, Jun 28 2014
(PARI) Vec( 1/((1-x)*(1-x^2)*(1-x^3)^2*(1-x^4)) + O(x^100)) \\ Michel Marcus, Jun 28 2014
CROSSREFS
Sequence in context: A117117 A135109 A281615 * A240730 A376624 A039846
KEYWORD
nonn,easy
AUTHOR
Arturo Magidin, Jun 12 2012
STATUS
approved