

A045616


Primes p such that 10^(p1) == 1 (mod p^2).


11




OFFSET

1,1


COMMENTS

Primes p such that the decimal fraction 1/p has same period length as 1/p^2.
No further terms below 3.4*10^13 (cf. Fischer's table).
56598313 was announced in the paper by Brillhart et al.  Helmut Richter (richter(AT)lrz.de), May 17 2004


REFERENCES

J. Brillhart, J. Tonascia, and P. Weinberger, On the Fermat quotient, pp. 213222 of A. O. L. Atkin and B. J. Birch, editors, Computers in Number Theory. Academic Press, NY, 1971.
Richard K. Guy, Unsolved Problems in Number Theory, Springer, 2004, A3.


LINKS

Table of n, a(n) for n=1..3.
Richard Fischer, Fermat quotients B^(P1) == 1 (mod P^2).
P. L. Montgomery, New solutions of a^p1 == 1 (mod p^2), Math. Comp., 61 (203), 361363.
Math Overflow, Is the smallest primitive root modulo p a primitive root modulo p^2?, Jun 09 2010.
Helmut Richter, The period length of the decimal expansion of a fraction.
Helmut Richter, The Prime Factors Of 10^4861.
Samuel Yates, The Mystique of Repunits, Math. Mag. 51 (1978), 2228.


PROG

(PARI) lista(nn) = forprime(p=2, nn, if (Mod(10, p^2)^(p1)==1, print1(p, ", "))); \\ Michel Marcus, Aug 16 2015


CROSSREFS

Cf. A001220, A014127, A123692, A123693, A111027, A039951.
Sequence in context: A230029 A238447 A241977 * A198705 A198624 A198652
Adjacent sequences: A045613 A045614 A045615 * A045617 A045618 A045619


KEYWORD

bref,hard,nonn,nice,more


AUTHOR

Helmut Richter (richter(AT)lrz.de)


STATUS

approved



