This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A045616 Primes p such that 10^(p-1) == 1 (mod p^2). 15
 3, 487, 56598313 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS Primes p such that the decimal fraction 1/p has same period length as 1/p^2, i.e., the multiplicative order of 10 modulo p is the same as the multiplicative order of 10 modulo p^2. [extended by Felix FrÃ¶hlich, Feb 05 2017] No further terms below 7.74*10^13 (cf. Fischer's table). 56598313 was announced in the paper by Brillhart et al. - Helmut Richter (richter(AT)lrz.de), May 17 2004 A265012(A049084(a(n))) = 1. - Reinhard Zumkeller, Nov 30 2015 REFERENCES J. Brillhart, J. Tonascia, and P. Weinberger, On the Fermat quotient, pp. 213-222 of A. O. L. Atkin and B. J. Birch, editors, Computers in Number Theory. Academic Press, NY, 1971. Richard K. Guy, Unsolved Problems in Number Theory, Springer, 2004, A3. LINKS Richard Fischer, Fermat quotients B^(P-1) == 1 (mod P^2). P. L. Montgomery, New solutions of a^p-1 == 1 (mod p^2), Math. Comp., 61 (203), 361-363. Math Overflow, Is the smallest primitive root modulo p a primitive root modulo p^2?, Jun 09 2010. Helmut Richter, The period length of the decimal expansion of a fraction. Helmut Richter, The Prime Factors Of 10^486-1. Samuel Yates, The Mystique of Repunits, Math. Mag. 51 (1978), 22-28. MATHEMATICA A045616Q = PrimeQ@# && PowerMod[10, # - 1, #^2] == 1 &; Select[Range[1000000], A045616Q] (* JungHwan Min, Feb 04 2017 *) Select[Prime[Range[34*10^5]], PowerMod[10, #-1, #^2]==1&] (* Harvey P. Dale, Apr 10 2018 *) PROG (PARI) lista(nn) = forprime(p=2, nn, if (Mod(10, p^2)^(p-1)==1, print1(p, ", "))); \\ Michel Marcus, Aug 16 2015 (Haskell) import Math.NumberTheory.Moduli (powerMod) a045616 n = a045616_list !! (n-1) a045616_list = filter                (\p -> powerMod 10 (p - 1) (p ^ 2) == 1) a000040_list' -- Reinhard Zumkeller, Nov 30 2015 CROSSREFS Cf. A001220, A014127, A123692, A212583, A123693, A111027, A128667, A234810, A242741, A128668, A244260, A090968, A242982, A128669, A039951. Cf. A265012, A049084, A000040. Sequence in context: A230029 A238447 A241977 * A198705 A198624 A198652 Adjacent sequences:  A045613 A045614 A045615 * A045617 A045618 A045619 KEYWORD bref,hard,nonn,nice,more AUTHOR Helmut Richter (richter(AT)lrz.de) STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 16 04:51 EDT 2018. Contains 312645 sequences. (Running on oeis4.)