login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A045616
Primes p such that 10^(p-1) == 1 (mod p^2).
20
3, 487, 56598313
OFFSET
1,1
COMMENTS
Primes p such that the decimal fraction 1/p has same period length as 1/p^2, i.e., the multiplicative order of 10 modulo p is the same as the multiplicative order of 10 modulo p^2. [extended by Felix Fröhlich, Feb 05 2017]
No further terms below 1.172*10^14 (as of Feb 2020, cf. Fischer's table).
56598313 was announced in the paper by Brillhart et al. - Helmut Richter, May 17 2004
A265012(A049084(a(n))) = 1. - Reinhard Zumkeller, Nov 30 2015
REFERENCES
J. Brillhart, J. Tonascia, and P. Weinberger, On the Fermat quotient, pp. 213-222 of A. O. L. Atkin and B. J. Birch, editors, Computers in Number Theory. Academic Press, NY, 1971.
Richard K. Guy, Unsolved Problems in Number Theory, Springer, 2004, A3.
LINKS
Amir Akbary and Sahar Siavashi, The Largest Known Wieferich Numbers, INTEGERS, 18(2018), A3. See Table 1 p. 5.
Wilfrid Keller and Jörg Richstein, Solutions of the congruence a^(p-1) == 1 (mod p^r), Math. Comp. 74 (2005), 927-936.
Peter L. Montgomery, New solutions of a^(p-1) == 1 (mod p^2), Math. Comp. 61 (1993), 361-363.
Samuel Yates, The Mystique of Repunits, Math. Mag. 51 (1978), 22-28.
MATHEMATICA
A045616Q = PrimeQ@# && PowerMod[10, # - 1, #^2] == 1 &; Select[Range[1000000], A045616Q] (* JungHwan Min, Feb 04 2017 *)
Select[Prime[Range[34*10^5]], PowerMod[10, #-1, #^2]==1&] (* Harvey P. Dale, Apr 10 2018 *)
PROG
(PARI) lista(nn) = forprime(p=2, nn, if (Mod(10, p^2)^(p-1)==1, print1(p, ", "))); \\ Michel Marcus, Aug 16 2015
(Haskell)
import Math.NumberTheory.Moduli (powerMod)
a045616 n = a045616_list !! (n-1)
a045616_list = filter
(\p -> powerMod 10 (p - 1) (p ^ 2) == 1) a000040_list'
-- Reinhard Zumkeller, Nov 30 2015
KEYWORD
bref,hard,nonn,nice,more
AUTHOR
Helmut Richter, Dec 11 1999
STATUS
approved