login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A206811
Sum_{0<j<k<=n} (k^4-j^4).
3
15, 160, 830, 2976, 8477, 20608, 44604, 88320, 162987, 284064, 472186, 754208, 1164345, 1745408, 2550136, 3642624, 5099847, 7013280, 9490614, 12657568, 16659797, 21664896, 27864500, 35476480, 44747235, 55954080, 69407730
OFFSET
2,1
COMMENTS
Partial sums of A206810. For a guide to related sequences, see A206817.
FORMULA
a(n) = (n*(1+n)^2*(1-6*n+n^2+4*n^3))/30. G.f.: -x^2*(x^3+25*x^2+55*x+15) / (x-1)^7. - Colin Barker, Jul 11 2014
EXAMPLE
a(4) = 16-1 + 81-1 + 81-16 = 160.
MATHEMATICA
s[k_] := k^4; t[1] = 0;
p[n_] := Sum[s[k], {k, 1, n}];
c[n_] := n*s[n] - p[n];
t[n_] := t[n - 1] + (n - 1) s[n] - p[n - 1]
Table[c[n], {n, 2, 50}] (* A206810 *)
Flatten[Table[t[n], {n, 2, 35}]] (* A206811 *)
PROG
(PARI) Vec(-x^2*(x^3+25*x^2+55*x+15)/(x-1)^7 + O(x^100)) \\ Colin Barker, Jul 11 2014
(Sage) [sum([sum([k^4-j^4 for j in range(1, k)]) for k in range(2, n+1)]) for n in range(2, 29)] # Danny Rorabaugh, Apr 18 2015
CROSSREFS
Sequence in context: A183555 A232415 A016297 * A027544 A021048 A095685
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Feb 15 2012
STATUS
approved