Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #19 Jun 17 2017 03:55:10
%S 15,160,830,2976,8477,20608,44604,88320,162987,284064,472186,754208,
%T 1164345,1745408,2550136,3642624,5099847,7013280,9490614,12657568,
%U 16659797,21664896,27864500,35476480,44747235,55954080,69407730
%N Sum_{0<j<k<=n} (k^4-j^4).
%C Partial sums of A206810. For a guide to related sequences, see A206817.
%H Danny Rorabaugh, <a href="/A206811/b206811.txt">Table of n, a(n) for n = 2..10000</a>
%H <a href="/index/Rec#order_07">Index entries for linear recurrences with constant coefficients</a>, signature (7,-21,35,-35,21,-7,1).
%F a(n) = (n*(1+n)^2*(1-6*n+n^2+4*n^3))/30. G.f.: -x^2*(x^3+25*x^2+55*x+15) / (x-1)^7. - _Colin Barker_, Jul 11 2014
%e a(4) = 16-1 + 81-1 + 81-16 = 160.
%t s[k_] := k^4; t[1] = 0;
%t p[n_] := Sum[s[k], {k, 1, n}];
%t c[n_] := n*s[n] - p[n];
%t t[n_] := t[n - 1] + (n - 1) s[n] - p[n - 1]
%t Table[c[n], {n, 2, 50}] (* A206810 *)
%t Flatten[Table[t[n], {n, 2, 35}]] (* A206811 *)
%o (PARI) Vec(-x^2*(x^3+25*x^2+55*x+15)/(x-1)^7 + O(x^100)) \\ _Colin Barker_, Jul 11 2014
%o (Sage) [sum([sum([k^4-j^4 for j in range(1,k)]) for k in range(2,n+1)]) for n in range(2,29)] # _Danny Rorabaugh_, Apr 18 2015
%Y Cf. A206810, A206817.
%K nonn,easy
%O 2,1
%A _Clark Kimberling_, Feb 15 2012