login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A206813 Position of 3^n in joint ranking of {2^i}, {3^j}, {5^k}. 3
2, 6, 9, 12, 15, 19, 22, 25, 29, 31, 35, 39, 41, 45, 48, 51, 54, 58, 61, 64, 68, 71, 74, 78, 81, 84, 87, 91, 93, 97, 101, 103, 107, 110, 113, 117, 120, 123, 126, 130, 132, 136, 140, 143, 146, 149, 153, 156, 159, 163, 165, 169, 173, 175, 179, 182, 185, 188 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

The exponents i,j,k range through the set N of positive integers, so that the position sequences (A206812 for 2^n, A206813 for 3^n, A206814 for 5^n) partition N.

LINKS

Table of n, a(n) for n=1..58.

FORMULA

A205812(n) = n + [n*log(base 3)(2)] + [n*log(base 5)(2)],

A205813(n) = n + [n*log(base 2)(3)] + [n*log(base 5)(3)],

A205814(n) = n + [n*log(base 2)(5)] + [n*log(base 3)(5)],

where []=floor.

EXAMPLE

The joint ranking begins with 2,3,4,5,8,9,16,25,27,32,64,81,125,128,243,256, so that

A205812=(1,3,5,7,10,11,14,...)

A205813=(2,6,9,12,15,...)

A205814=(4,8,13,18,23,...)

MATHEMATICA

f[1, n_] := 2^n; f[2, n_] := 3^n;

f[3, n_] := 5^n; z = 1000;

d[n_, b_, c_] := Floor[n*Log[b, c]];

t[k_] := Table[f[k, n], {n, 1, z}];

t = Sort[Union[t[1], t[2], t[3]]];

p[k_, n_] := Position[t, f[k, n]];

Flatten[Table[p[1, n], {n, 1, z/8}]] (* A206812 *)

Table[n + d[n, 3, 2] + d[n, 5, 2],

{n, 1, 50}] (* A206812 *)

Flatten[Table[p[2, n], {n, 1, z/8}]] (* A206813 *)

Table[n + d[n, 2, 3] + d[n, 5, 3],

{n, 1, 50}] (* A206813 *)

Flatten[Table[p[3, n], {n, 1, z/8}]] (* A206814 *)

Table[n + d[n, 2, 5] + d[n, 3, 5],

{n, 1, 50}] (* A206814 *)

CROSSREFS

Cf. A206805, A206812, A206814.

Sequence in context: A120701 A350235 A189752 * A189371 A190059 A190332

Adjacent sequences: A206810 A206811 A206812 * A206814 A206815 A206816

KEYWORD

nonn

AUTHOR

Clark Kimberling, Feb 17 2012

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 30 23:40 EDT 2023. Contains 361623 sequences. (Running on oeis4.)