login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A129828
Odd primes p such that p divides both Apery numbers A005259((p-3)/2) and A005259((p+1)/2).
0
5, 19, 37, 283, 367, 3347, 132157
OFFSET
1,1
COMMENTS
From the recurrence for A005259, it follows that A005259((p-3)/2) == A005259((p+1)/2) (mod p) for any odd prime p. Hence, p divides either both or neither of A005259((p-3)/2) and A005259((p+1)/2). There are no other terms below 10^6. - Max Alekseyev, Oct 27 2023
LINKS
Eric Weisstein's World of Mathematics, Apéry Number.
MATHEMATICA
a=5; b=73; Do[ c=a; a=b; b=( (34*n^3 + 51*n^2 + 27*n +5)*b - n^3*c )/(n+1)^3; If[ PrimeQ[2n-1] && IntegerQ[a/(2n-1)], Print[2n-1] ], {n, 2, 10000} ].
PROG
(PARI) { is_A129828(p) = my(n, n1, n2, f, s=1); n1=n2=f=Mod(1, p); n=(p-3)\2; for(k=1, n, f*=k; n1*=n+k; n2*=n+1-k; s+=(n1*n2/f^2)^2); s==0; } \\ Max Alekseyev, Oct 27 2023
CROSSREFS
Cf. A005259 (Apéry numbers).
Sequence in context: A068963 A257929 A254060 * A239831 A146600 A262997
KEYWORD
nonn,hard,more
AUTHOR
Alexander Adamchuk, May 20 2007
EXTENSIONS
a(7) from Alexander Adamchuk, May 02 2010
STATUS
approved