login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A254060
a(n) is the denominator of the generalized continued fraction with terms sigma(m)/m for m=1 to n.
2
1, 5, 19, 37, 223, 297, 3863, 35359, 36845, 2160481, 2168207, 1246043, 65019169, 6514845019, 39336218671, 23752562695, 14840826739603, 99852376463843, 2194011687605077, 24037016781791473, 44229671263152569, 965358470386151983, 169222371166274070791
OFFSET
1,2
EXAMPLE
The values of sigma(n)/n are: 1/1, 3/2, 4/3, 7/4, 6/5, ...
For n=1, the continued fraction is 1/1 so a(1)=1.
For n=2, it is 1/(1+3/2) = 2/5, so a(2)=5.
For n=3, it is 1/(1+3/(2+4/3)) = 10/19, so a(3)=19.
PROG
(PARI) a(nn) = {my(v = vector(nn, n, sigma(n)/n)); for (n=1, nn, val = v[n]; forstep(k=n-1, 1, -1, val = numerator(v[k])/(denominator(v[k]) + val); ); print1(denominator(val), ", "); ); }
CROSSREFS
Cf. A017665 and A017666 (numerator and denominator of sigma(n)/n).
Cf. A254059 (denominators), A254061.
Sequence in context: A146861 A068963 A257929 * A129828 A239831 A146600
KEYWORD
nonn,frac
AUTHOR
Michel Marcus, Jan 24 2015
STATUS
approved