OFFSET
1,1
COMMENTS
Taking logarithms and using approximation for binomial coefficients, we obtain that n < log C(a(n), n) ~ a(n)H(n/a(n)), so we need to solve x=H(x) with x=n/a(n), which gives a(n) ~ 1.29n.
a(n) ~ r * n, where r = 1.293815373340415493316601653303657352145361654147... is the root of the equation r^r = 2*(r-1)^(r-1). - Vaclav Kotesovec, Jan 29 2015
LINKS
Chai Wah Wu, Table of n, a(n) for n = 1..10000
MATHEMATICA
f[n_] := Block[{k = n}, While[ Binomial[k, n] < 2^n, k++]; k]; Array[f, 67] (* Robert G. Wilson v, Jan 28 2015 *)
PROG
(Python)
def A254058(n):
....b, a1, a2, t = 1, 0, n, 2**n
....while b < t:
........a2 += 1
........a1 += 1
........b = (b*a2)//a1
....return a2 # Chai Wah Wu, Jan 30 2015
(PARI) a(n) = x=1; while(binomial(x, n) < 2^n, x++); x; \\ Michel Marcus, Jan 28 2015
CROSSREFS
KEYWORD
nonn
AUTHOR
Domotor Palvolgyi, Jan 24 2015
STATUS
approved