login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A129814
a(n) = Bernoulli(n) * (n+1)!.
8
1, -1, 1, 0, -4, 0, 120, 0, -12096, 0, 3024000, 0, -1576143360, 0, 1525620096000, 0, -2522591034163200, 0, 6686974460694528000, 0, -27033456071346536448000, 0, 160078872315904478576640000, 0, -1342964491649083924630732800000, 0
OFFSET
0,5
COMMENTS
From Peter Luschny, Apr 21 2009: (Start)
Reading A137777 and A159749 as a triangular sequence:
2*a(n) = A137777(n, 0) for n > 0.
2*a(n) = (-1)^n*A159749(n, 0) for n >= 0. (End)
LINKS
Eric Weisstein's World of Mathematics, Bernoulli Number
Eric Weisstein's World of Mathematics, Polygamma Function
FORMULA
a(2*n) = A001332(n).
E.g.f.: -2 x - psi_2(1/x) / x^2, where psi_n(z) is the polygamma function, psi_n(z) = (d/dz)^{n+1} log(Gamma(z)). - Vladimir Reshetnikov, Apr 24 2013
MATHEMATICA
Table[BernoulliB[n](n+1)!, {n, 0, 30}] (* Harvey P. Dale, Jan 18 2013 *)
Table[SeriesCoefficient[-2 x - PolyGamma[2, 1/x] / x^2, {x, 0, n}, Assumptions -> x > 0] n!, {n, 0, 30}] (* Vladimir Reshetnikov, Apr 24 2013 *)
PROG
(PARI) {for(n=0, 25, print1(bernfrac(n)*(n+1)!, ", "))}
(PARI) {a(n) = if( n<0, 0, (n + 1)! * bernfrac( n))} /* Michael Somos, Mar 29 2011 */
(Magma) [Bernoulli(n) * Factorial(n+1): n in [0..100]]; // Vincenzo Librandi, Mar 29 2011
CROSSREFS
Cf. A001332.
Sequence in context: A337112 A357560 A013037 * A129825 A267441 A264883
KEYWORD
sign,easy
AUTHOR
Paul Curtz, May 20 2007
EXTENSIONS
Edited and extended by Klaus Brockhaus, May 28 2007
STATUS
approved