Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #23 Sep 08 2022 08:45:30
%S 1,-1,1,0,-4,0,120,0,-12096,0,3024000,0,-1576143360,0,1525620096000,0,
%T -2522591034163200,0,6686974460694528000,0,-27033456071346536448000,0,
%U 160078872315904478576640000,0,-1342964491649083924630732800000,0
%N a(n) = Bernoulli(n) * (n+1)!.
%C From _Peter Luschny_, Apr 21 2009: (Start)
%C Reading A137777 and A159749 as a triangular sequence:
%C 2*a(n) = A137777(n, 0) for n > 0.
%C 2*a(n) = (-1)^n*A159749(n, 0) for n >= 0. (End)
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/BernoulliNumber.html">Bernoulli Number</a>
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/PolygammaFunction.html">Polygamma Function</a>
%F a(2*n) = A001332(n).
%F E.g.f.: -2 x - psi_2(1/x) / x^2, where psi_n(z) is the polygamma function, psi_n(z) = (d/dz)^{n+1} log(Gamma(z)). - _Vladimir Reshetnikov_, Apr 24 2013
%t Table[BernoulliB[n](n+1)!,{n,0,30}] (* _Harvey P. Dale_, Jan 18 2013 *)
%t Table[SeriesCoefficient[-2 x - PolyGamma[2, 1/x] / x^2, {x, 0, n}, Assumptions -> x > 0] n!, {n, 0, 30}] (* _Vladimir Reshetnikov_, Apr 24 2013 *)
%o (PARI) {for(n=0, 25, print1(bernfrac(n)*(n+1)!, ","))}
%o (PARI) {a(n) = if( n<0, 0, (n + 1)! * bernfrac( n))} /* _Michael Somos_, Mar 29 2011 */
%o (Magma) [Bernoulli(n) * Factorial(n+1): n in [0..100]]; // _Vincenzo Librandi_, Mar 29 2011
%Y Cf. A001332.
%K sign,easy
%O 0,5
%A _Paul Curtz_, May 20 2007
%E Edited and extended by _Klaus Brockhaus_, May 28 2007