login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A357560
a(n) = the numerator of ( Sum_{k = 1..n} (-1)^(n+k)*(1/k)*binomial(n,k)* binomial(n+k,k)^2 ).
3
0, 4, 0, 94, 500, 19262, 50421, 2929583, 25197642, 2007045752, 3634262225, 368738402141, 6908530637021, 852421484283739, 1168833981781025, 56641833705924527, 276827636652242789, 46345946530867053437, 51051733540797155872, 9673584199611903429172
OFFSET
0,2
COMMENTS
Define S_m(n) = the numerator of Sum_{k = 1..n} (-1)^(n+k)*(1/k^m)*binomial(n,k)* binomial(n+k,k)^2, so that S_0(n) = -1 + A005258(n), one of the two types of Apéry numbers. The present sequence is the case m = 1. See A357561 for the case m = 3.
Conjectures:
1) for even m >= 2, S_m(p-1) == 0 (mod p^3) for all primes p > m + 3.
2) for odd m >= 1, S_m(p-1) == 0 (mod p^4) for all primes p > m + 4.
FORMULA
Conjecture: a(p-1) == 0 (mod p^4) for all primes p >= 7 (checked up to p = 499).
Note: the Apéry numbers B(n) = A005258(n) = Sum_{k = 0..n} (-1)^(n+k)* binomial(n,k)*binomial(n+k,k)^2 satisfy the supercongruences B(p-1) == 1 (mod p^3) for all primes p >= 5 (see, for example, Straub, Example 3.4).
EXAMPLE
Example of a supercongruence:
p = 19: a(19 - 1) = 51051733540797155872 = (2^5)*(19^4)*12241823444801 == 0 (mod 19^4).
MAPLE
seq( numer(add( (-1)^(n+k) * (1/k) * binomial(n, k) * binomial(n+k, k)^2, k = 1..n )), n = 0..20 );
KEYWORD
nonn,easy
AUTHOR
Peter Bala, Oct 04 2022
STATUS
approved