login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A357563
a(n) = b(n) - 2*b(b(b(n))) for n >= 3, where b(n) = A356988(n).
2
0, 1, 1, 0, 1, 1, 0, 1, 2, 2, 2, 1, 0, 1, 2, 3, 3, 3, 3, 2, 1, 0, 1, 2, 3, 4, 5, 5, 5, 5, 5, 5, 4, 3, 2, 1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 7, 6, 5, 4, 3, 2, 1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2
OFFSET
3,9
COMMENTS
a(n+1) - a(n) is equal to 0, 1 or -1.
The sequence vanishes at abscissa values n = 3, 6, 9, 15, 24, 39, ..., 3*Fibonacci(k), ....
For k >= 2, the line graph of the sequence, starting from the zero value at abscissa n = 3*Fibonacci(k), ascends with slope 1 to a local plateau at height Fibonacci(k-1) at abscissa value n = Lucas(k+1). The plateau has length Fibonacci(k-1). From the end of the plateau, at abscissa value n = Fibonacci(k+3), the graph of the sequence descends with slope -1 to the next zero at abscissa n = 3*Fibonacci(k+1).
FORMULA
For k >= 2 there holds
a(3*Fibonacci(k) + j) = j for 0 <= j <= Fibonacci(k-1) (rise from 0 to plateau)
a(Lucas(k+1) + j) = Fibonacci(k-1) for 0 <= j <= Fibonacci(k-1) (plateau)
a(Fibonacci(k+3) + j) = Fibonacci(k-1) - j for 0 <= j <= Fibonacci(k-1) (descent back to 0).
MAPLE
# b(n) = A356988(n)
b := proc(n) option remember; if n = 1 then 1 else n - b(b(n - b(b(b(n-1))))) end if; end proc:
seq( b(n) - 2*b(b(b(n))), n = 3..100);
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Peter Bala, Oct 14 2022
STATUS
approved