login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A357566
a(n) = ( Sum_{k = 0..n} binomial(n+k-1,k)^2 )^3 * ( Sum_{k = 0..n} binomial(n+k-1,k)^3 )^2.
5
1, 32, 3556224, 4816142496896, 14260946236464636800, 62923492736113950202540032, 355372959542696519903013302282592, 2376354966106399942850054560101358877184, 17973185649572984869873798116070605084766512000, 149319509846904520286037745483655872001727895961600000
OFFSET
0,2
COMMENTS
Conjectures:
1) a(p) == a(1) (mod p^5) for all odd primes p except p = 5 (checked up to p = 271).
2) a(p^r) == a(p^(r-1)) (mod p^(3*r+3)) for r >= 2 and all primes p >= 5.
3) More generally, let m be a positive integer and set u(n) = ( Sum_{k = 0..m*n} binomial(n+k-1,k)^2 )^(m+2) * ( Sum_{k = 0..m*n} binomial(n+k-1,k)^3 )^(2*m). Then the supercongruences u(p) == u(1) (mod p^5) hold for all primes p >= 5.
4) u(p^r) == u(p^(r-1)) (mod p^(3*r+3)) for r >= 2 and all primes p >= 5.
EXAMPLE
a(7) - a(1) = 2376354966106399942850054560101358877184 - 32 = (2^5)*(7^5)*19*31*317*339247*25170329*2771351868561767 == 0 (mod 7^5).
MAPLE
seq((add(binomial(n+k-1, k)^2, k = 0..n))^3 * (add( binomial(n+k-1, k)^3, k = 0..n))^2, n = 0..20);
PROG
(PARI) a(n) = sum(k = 0, n, binomial(n+k-1, k)^2)^3 * sum(k = 0, n, binomial(n+k-1, k)^3)^2; \\ Michel Marcus, Oct 25 2022
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Peter Bala, Oct 16 2022
STATUS
approved