login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A357672
a(n) = Sum_{k = 0..n} binomial(n+k-1,k) * Sum_{k = 0..n} binomial(n+k-1,k)^2.
5
1, 4, 84, 2920, 121940, 5607504, 273908712, 13947188112, 732102614100, 39332168075200, 2152235533317584, 119531412173662944, 6720552415489860584, 381775182057562837600, 21879043278489630349200, 1263402662473729731877920, 73438613319490294002441300, 4293679728171938162242298400
OFFSET
0,2
COMMENTS
Conjectures:
1) a(p) == 4 (mod p^5) for all odd primes p except p = 5 (checked up to p = 499). Note that both A000984(p) == 2 (mod p^3) and A333592(p) == 2 (mod p^3) for all primes p >= 5 and hence a(p) == 4 (mod p^3) for all primes p >= 5.
2) For r >= 2, and all primes p >= 3, a(p^r) == a(p^(r-1)) ( mod p^(3*r+3) ).
3) More generally, let m be a positive integer and set u(n) = ( Sum_{k = 0..m*n} binomial(n+k-1,k) )^(2*m) * ( Sum_{k = 0..m*n} binomial(n+k-1,k)^2 )^(m+1). Then the sequence {u(n)} satisfies the supercongruence u(p) == u(1) (mod p^5) for all primes p >= 7. See A357674 for the case m = 2.
4) For r >= 2, and all primes p >= 5, u(p^r) == u(p^(r-1)) ( mod p^(3*r+3) ).
FORMULA
a(n) = A000984(n) * A333592(n).
a(n) ~ 2^(6*n)/(3*(Pi*n)^(3/2)).
EXAMPLE
Examples of supercongruences:
a(17) - a(1) = 4293679728171938162242298400 - 4 = (2^2)*(17^5)*3457* 218688360593678551 == 0 (mod 17^5).
a(5^2) - a(5) = (2^4)*(3^2)*(5^9)*7*7229*102559*465516030080883405648119 == 0 (mod 5^9).
MAPLE
seq(add(binomial(n+k-1, k), k = 0..n) * add( binomial(n+k-1, k)^2, k = 0..n), n = 0..20);
PROG
(PARI) a(n) = sum(k = 0, n, binomial(n+k-1, k)) * sum(k = 0, n, binomial(n+k-1, k)^2); \\ Michel Marcus, Oct 24 2022
KEYWORD
nonn,easy
AUTHOR
Peter Bala, Oct 10 2022
STATUS
approved