The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A333592 a(n) = Sum_{k = 0..n} binomial(n + k - 1, k)^2. 2
 1, 2, 14, 146, 1742, 22252, 296438, 4063866, 56884430, 808970960, 11649069764, 169444272692, 2485268015414, 36707034407396, 545386280953262, 8144809577111146, 122177689609022670, 1839933272106181720, 27804610617723365072, 421476329309967621504, 6406685024966332359492 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Compare with the closed-form evaluation Sum_{k = 0..n} C(n+k-1,k) = C(2*n,n) = A000984(n) (see the first comment in A001700 for a proof). It is well-known that Sum_{k = 0..n} C(n,k)^2 = C(2*n,n). Here, we consider by analogy Sum_{k = 0..n} C(-n,k)^2, where C(-n,k) = (-1)^k*C(n+k-1,k) for integer n and nonnegative integer k. The sequence b(n) = C(2*n,n) of central binomial coefficients satisfies the supercongruences b(n*p^k) = b(n*p^(k-1)) ( mod p^(3*k) ) for all prime p >= 5 and any positive integers n and k -  see Mestrovic. We conjecture that the present sequence also satisfies these supercongruences. Some examples of the congruences are given below. More generally, calculation suggests that for positive integer A and integer B, the sequence a(A,B;n) := Sum_{k = 0..A*n} C(B*n+k-1,k)^2 may satisfy the same supercongruences. The sequence (a(p) - 2)/(2*p^3) for prime p >= 5 begins [89, 5924, 63652995, 8353899501, 187251503369243, 30724327840061789, 937835335872800013431, ...]. Cf. A034602. LINKS Seiichi Manyama, Table of n, a(n) for n = 0..500 R. Mestrovic, Wolstenholme's theorem: Its Generalizations and Extensions in the last hundred and fifty years (1862-2011), arXiv:1111.3057 [math.NT], 2011. FORMULA a(n) ~ 2^(4*n) / (3*Pi*n). - Vaclav Kotesovec, Mar 28 2020 EXAMPLE Examples of supercongruences: a(11) - a(1) = 169444272692 - 2 = 2*(3^2)*5*7*(11^3)*397*509 == 0 ( mod 11^3 ). a(2*7) - a(2) = 545386280953262 - 14 = (2^5)*(3^2)*(7^4)*788714021 == 0 ( mod 7^3 ). a(5^2) - a(5) = 5375188503768783714940459752 - 22252 = (2^2)*(5^6)*(31^2)* 89493252924350197127 == 0 ( mod 5^6 ). MAPLE seq( add( binomial(n+k-1, k)^2, k = 0..n ), n = 0..25); MATHEMATICA Table[Binomial[2*n-1, n]^2 * HypergeometricPFQ[{1, -n, -n}, {1 - 2*n, 1 - 2*n}, 1], {n, 1, 20}] (* Vaclav Kotesovec, Mar 28 2020 *) PROG (PARI) a(n) = sum(k=0, n, binomial(n+k-1, k)^2); \\ Michel Marcus, Mar 29 2020 CROSSREFS Cf. A000984, A034602, A333593. Sequence in context: A328004 A271564 A100510 * A087132 A036079 A121227 Adjacent sequences:  A333589 A333590 A333591 * A333593 A333594 A333595 KEYWORD nonn,easy AUTHOR Peter Bala, Mar 27 2020 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 27 05:41 EST 2021. Contains 340455 sequences. (Running on oeis4.)