OFFSET
0,3
COMMENTS
This is a natural quantity to consider when viewing the symmetric group (Sym_n) as a set. a(n) is the sum over all elements of Sym_n of the size of their conjugacy class. Each conjugacy class is thus counted as many times as its size, giving a sum of squares. - Olivier Gérard, Feb 12 2012
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..254 (terms n = 1..57 from Vaclav Kotesovec)
Simon R. Blackburn, John R. Britnell, and Mark Wildon, The probability that a pair of elements of a finite group are conjugate, arXiv:1108.1784 [math.GR], 2011-2012.
Philippe Flajolet, Éric Fusy, Xavier Gourdon, Daniel Panario and Nicolas Pouyanne, A Hybrid of Darboux's Method and Singularity Analysis in Combinatorial Asymptotics, arXiv:math/0606370 [math.CO], 2006.
FORMULA
a(n) = (n!)^2 * (c/n^2 + O((log n)/n^3)), where c = prod_{k>=1}sum_{n>=0}1/(k*n!)^2 ~ 4.263403514152669778298935... (see A246879). [Corrected by Vaclav Kotesovec, Sep 21 2014]
MAPLE
b:= proc(n, i) option remember; uses combinat; `if`(n=0, 1,
`if`(i<1, 0, add(b(n-i*j, i-1)*((i-1)!^j/j!*
multinomial(n, n-i*j, i$j, 0))^2, j=0..n/i)))
end:
a:= n-> b(n$2):
seq(a(n), n=0..21); # Alois P. Heinz, Jul 27 2023
MATHEMATICA
multinomial[n_, k_List] := n! / Times @@ (k!);
b[n_, i_] := b[n, i] = If[n == 0, 1,
If[i < 1, 0, Sum[b[n-i*j, i-1]*((i-1)!^j/j!*
multinomial[n, {n-i*j, Sequence@@Table[i, {j}], 0}])^2, {j, 0, n/i}]]];
a[n_] := b[n, n];
Table[a[n], {n, 0, 21}] (* Jean-François Alcover, Mar 29 2024, after Alois P. Heinz *)
PROG
(Magma) [ &+[ c[2]^2 : c in ClassesData(Sym(n))] : n in [1..10]]; // Sergei Haller (sergei(AT)sergei-haller.de), Dec 21 2006
CROSSREFS
KEYWORD
nonn
AUTHOR
Yuval Dekel (dekelyuval(AT)hotmail.com), Oct 18 2003
EXTENSIONS
More terms from Vladeta Jovovic, Oct 22 2003
More terms from Vaclav Kotesovec, Sep 21 2014
a(0)=1 prepended by Alois P. Heinz, Jul 27 2023
STATUS
approved