OFFSET
0,2
COMMENTS
For any natural m>3, the other sequences can be obtained from C(m,n).
C(2,n) is the Catalan number C_n. Moreover, for example, C(4,1)=1, C(4,2)=11880, C(5,1)=336 and C(5,2)=3603600.
LINKS
R. Kahkeshani, A Generalization of the Catalan Numbers, J. integer Seq., 16 (2013), Article 13.6.8.
FORMULA
C(m,n) = 1/(n(m-1)+1)*binomial(2n(m-1),n,...,n,n(m-1)).
From Benedict W. J. Irwin, Oct 11 2016: (Start)
To clarify the above:
C(m,n) = 1/(n*(m-1)+1)*(2*n*(m-1))!/(n!)^(m-1)/(n*(m-1))!.
G.f.: 3F2(1/4,1/2,3/4; 1,3/2; 64*x). (End)
n^2*(2*n+1)*a(n) +4*-(4*n-3)*(2*n-1)*(4*n-1)*a(n-1)=0. - R. J. Mathar, Jul 15 2017
MAPLE
A270577 := proc(n)
A000108(2*n)*binomial(2*n, n) ;
end proc:
seq(A270577(n), n=0..30) ; # R. J. Mathar, Jul 15 2017
MATHEMATICA
Table[CatalanNumber[2n]Binomial[2n, n], {n, 0, 20}] (* Benedict W. J. Irwin, Oct 14 2016 *)
PROG
(PARI) a(n)=binomial(4*n, 2*n)/(2*n+1) * binomial(2*n, n) \\ Charles R Greathouse IV, Oct 14 2016
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Reza Kahkeshani, Mar 19 2016
STATUS
approved