login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A270577
Generalized Catalan numbers C(3,n), where the (m,n)-th Catalan is the number of paths in R^m from the origin to the point (n,...,n,(m-1)n) with m kinds of moves such that the path never rises above the hyperplane x_m = x_1+...+x_{m-1}.
2
1, 4, 84, 2640, 100100, 4232592, 192203088, 9178678080, 455053212900, 23222793594000, 1212760632317520, 64534727833692480, 3488102039411078544, 191031492362224091200, 10580671081188491976000, 591771245038033007566080, 33380437374581432902637220
OFFSET
0,2
COMMENTS
For any natural m>3, the other sequences can be obtained from C(m,n).
C(2,n) is the Catalan number C_n. Moreover, for example, C(4,1)=1, C(4,2)=11880, C(5,1)=336 and C(5,2)=3603600.
LINKS
R. Kahkeshani, A Generalization of the Catalan Numbers, J. integer Seq., 16 (2013), Article 13.6.8.
FORMULA
C(m,n) = 1/(n(m-1)+1)*binomial(2n(m-1),n,...,n,n(m-1)).
From Benedict W. J. Irwin, Oct 11 2016: (Start)
To clarify the above:
C(m,n) = 1/(n*(m-1)+1)*(2*n*(m-1))!/(n!)^(m-1)/(n*(m-1))!.
a(n) = C(3,n) = Catalan(2*n) * binomial(2*n,n) = A000108(2*n)*A000984(n).
G.f.: 3F2(1/4,1/2,3/4; 1,3/2; 64*x). (End)
n^2*(2*n+1)*a(n) +4*-(4*n-3)*(2*n-1)*(4*n-1)*a(n-1)=0. - R. J. Mathar, Jul 15 2017
MAPLE
A270577 := proc(n)
A000108(2*n)*binomial(2*n, n) ;
end proc:
seq(A270577(n), n=0..30) ; # R. J. Mathar, Jul 15 2017
MATHEMATICA
Table[CatalanNumber[2n]Binomial[2n, n], {n, 0, 20}] (* Benedict W. J. Irwin, Oct 14 2016 *)
PROG
(PARI) a(n)=binomial(4*n, 2*n)/(2*n+1) * binomial(2*n, n) \\ Charles R Greathouse IV, Oct 14 2016
CROSSREFS
Sequence in context: A053352 A322330 A356504 * A156477 A024259 A357672
KEYWORD
nonn,easy
AUTHOR
Reza Kahkeshani, Mar 19 2016
STATUS
approved