login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A357669
a(n) is the number of divisors of the powerful part of n.
5
1, 1, 1, 3, 1, 1, 1, 4, 3, 1, 1, 3, 1, 1, 1, 5, 1, 3, 1, 3, 1, 1, 1, 4, 3, 1, 4, 3, 1, 1, 1, 6, 1, 1, 1, 9, 1, 1, 1, 4, 1, 1, 1, 3, 3, 1, 1, 5, 3, 3, 1, 3, 1, 4, 1, 4, 1, 1, 1, 3, 1, 1, 3, 7, 1, 1, 1, 3, 1, 1, 1, 12, 1, 1, 3, 3, 1, 1, 1, 5, 5, 1, 1, 3, 1, 1, 1
OFFSET
1,4
COMMENTS
The corresponding sum of divisors of the powerful part of n is A295294.
LINKS
FORMULA
a(n) = A000005(A057521(n)).
a(n) = A000005(n)/A056671(n).
a(n) = A000005(A064549(A003557(n))).
a(n) = 1 iff n is squarefree (A005117).
a(n) = A000005(n) iff n is powerful (A001694).
Multiplicative with a(p^e) = 1 if e = 1 and e+1 otherwise.
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Product_{p prime} ((p^3 - p^2 + 2*p - 1)/(p^2*(p - 1))) = 2.71098009471568319328... .
Dirichlet g.f.: zeta(s)^2 * Product_{p prime} (1 - 1/p^s + 2/p^(2*s) - 1/p^(3*s)). - Amiram Eldar, Sep 09 2023
MATHEMATICA
f[p_, e_] := If[e == 1, 1, e + 1]; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
PROG
(PARI) a(n) = {my(e = factor(n)[, 2]); prod(i=1, #e, if(e[i] == 1, 1, e[i] + 1))};
KEYWORD
nonn,easy,mult
AUTHOR
Amiram Eldar, Oct 08 2022
STATUS
approved