The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A123940 A Caratheodory-Fejer Theorem set of matrices whose characteristic polynomials produce a triangular sequence: {{a[n],...,a[0]}, {a[n-1],...,a[0],0}, ..., {a[0],0,...,0}}. 0
 1, 1, -1, -1, -1, 1, -1, 0, 3, -1, 1, 1, -4, -4, 1, 1, 0, -6, 0, 8, -1, -1, -1, 7, 7, -12, -12, 1, -1, 0, 9, 0, -25, 0, 21, -1, 1, 1, -10, -10, 32, 32, -33, -33, 1, 1, 0, -12, 0, 51, 0, -90, 0, 55, -1, -1, -1, 13, 13, -61, -61, 122, 122, -88, -88, 1, -1, 0, 15, 0, -86, 0, 234, 0, -300, 0, 144, -1, 1, 1, -16, -16, 99, 99, -295, -295, 422, 422 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 1,9 REFERENCES Rosenblum and Rovnyak, Hardy Classes and Operator Theory, Dover, New York, 1985, page 26. LINKS Table of n, a(n) for n=1..88. Martin H. Gutknecht and Lloyd N. Trefethen, Real Polynomial Chebyshev Approximation by the Caratheodory-Fejer Method, SIAM Journal on Numerical Analysis, Vol. 19, No. 2 (Apr., 1982), pp. 358-371. EXAMPLE Triangle begins: 1; 1, -1; -1, -1, 1; -1, 0, 3, -1; 1, 1, -4, -4, 1; 1, 0, -6, 0, 8, -1; -1, -1, 7, 7, -12, -12, 1; -1, 0, 9, 0, -25, 0, 21, -1; 1, 1, -10, -10, 32, 32, -33, -33, 1; Polynomials: 1; 1 - x; -1 - x + x^2; -1 + 3*x^2 - x^3; 1 + x - 4*x^2 - 4*x^3 + x^4; 1 - 6*x^2 + 8*x^4 - x^5; -1 - x + 7*x^2 + 7*x^3 - 12*x^4 - 12*x^5 + x^6; ... MATHEMATICA An[d_] := Table[If[n + m - 1 > d, 0, Fibonacci[d - (n + m - 1) + 1]], {n, 1, d}, {m, 1, d}]; Join[{{1}}, Table[CoefficientList[CharacteristicPolynomial[An[d], x], x], {d, 1, 20}]]; Flatten[%] CROSSREFS Sequence in context: A357669 A361012 A363903 * A350447 A339969 A204120 Adjacent sequences: A123937 A123938 A123939 * A123941 A123942 A123943 KEYWORD uned,tabl,sign AUTHOR Roger L. Bagula and Gary W. Adamson, Oct 25 2006 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 23 18:59 EDT 2024. Contains 372765 sequences. (Running on oeis4.)