login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A123942 The (1,4)-entry in the 4 X 4 matrix M^n, where M={{3, 2, 1, 1}, {2, 1, 1, 0}, {1, 1, 0, 0}, {1, 0, 0, 0}} (n>=0). 2
0, 1, 3, 15, 71, 340, 1626, 7778, 37205, 177966, 851280, 4072001, 19477953, 93170570, 445670811, 2131815570, 10197297001, 48777608903, 233322137235, 1116069871981, 5338593130960, 25536552265626, 122151189577128, 584296304368075, 2794914830384226 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

REFERENCES

Martin H. Gutknecht and Lloyd N. Trefethen, Real Polynomial Chebyshev Approximation by the Caratheodory-Fejer Method, http://links.jstor.org/sici?sici=0036-1429(198204)19%3A2%3C358%3ARPCABT%3E2.0.CO%3

Rosenblum and Rovnyak, Hardy Classes and Operator Theory, Dover, New York, 1985, page 26

LINKS

G. C. Greubel, Table of n, a(n) for n = 0..1000

Index entries for linear recurrences with constant coefficients, signature (4,4,-1,-1).

FORMULA

a(n) = 4*a(n-1) + 4*a(n-2) - a(n-3) - a(n-4) for n>=4 (follows from the minimal polynomial of the matrix M).

G.f.: x*(1-x-x^2)/(1-4*x-4*x^2+x^3+x^4). - Colin Barker, Oct 18 2013

MAPLE

with(linalg): M[1]:=matrix(4, 4, [3, 2, 1, 1, 2, 1, 1, 0, 1, 1, 0, 0, 1, 0, 0, 0]): for n from 2 to 30 do M[n]:=multiply(M[1], M[n-1]) od: 0, seq(M[n][1, 4], n=1..30);

a[0]:=0: a[1]:=1: a[2]:=3: a[3]:=15: for n from 4 to 30 do a[n]:=4*a[n-1] +4*a[n-2]-a[n-3]-a[n-4] od: seq(a[n], n=0..30);

MATHEMATICA

M = {{3, 2, 1, 1}, {2, 1, 1, 0}, {1, 1, 0, 0}, {1, 0, 0, 0}}; v[1] = {0, 0, 0, 1}; v[n_]:= v[n] = M.v[n-1]; Table[v[n][[1]], {n, 30}]

LinearRecurrence[{4, 4, -1, -1}, {0, 1, 3, 15}, 30] (* G. C. Greubel, Aug 05 2019 *)

PROG

(PARI) concat([0], Vec(x*(1-x-x^2)/(1-4*x-4*x^2+x^3+x^4) + O(x^30))) \\ Colin Barker, Oct 18 2013

(MAGMA) R<x>:=PowerSeriesRing(Integers(), 30); [0] cat Coefficients(R!( x*(1-x-x^2)/(1-4*x-4*x^2+x^3+x^4) )); // G. C. Greubel, Aug 05 2019

(Sage) (x*(1-x-x^2)/(1-4*x-4*x^2+x^3+x^4)).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, Aug 05 2019

(GAP) a:=[0, 1, 3, 15];; for n in [5..30] do a[n]:=4*a[n-1]+4*a[n-2]-a[n-3] -a[n-4]; od; a; # G. C. Greubel, Aug 05 2019

CROSSREFS

Cf. A122099, A122100.

Sequence in context: A009174 A178345 A183547 * A290902 A155117 A137638

Adjacent sequences:  A123939 A123940 A123941 * A123943 A123944 A123945

KEYWORD

nonn,easy

AUTHOR

Roger L. Bagula and Gary W. Adamson, Oct 25 2006

EXTENSIONS

Edited by N. J. A. Sloane, Dec 04 2006

More terms from Colin Barker, Oct 18 2013

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 20 20:28 EST 2019. Contains 329347 sequences. (Running on oeis4.)