login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A122099
a(n) = -3*a(n-1) + a(n-3) for n>2, with a(0)=1, a(1)=1, a(2)=0.
5
1, 1, 0, 1, -2, 6, -17, 49, -141, 406, -1169, 3366, -9692, 27907, -80355, 231373, -666212, 1918281, -5523470, 15904198, -45794313, 131859469, -379674209, 1093228314, -3147825473, 9063802210, -26098178316, 75146709475, -216376326215, 623030800329, -1793945691512, 5165460748321
OFFSET
0,5
FORMULA
G.f.: (1+4*x+3*x^2)/(1+3*x-x^3).
a(n) = (-1)^n*A122100(n). - R. J. Mathar, Sep 27 2014
MAPLE
seq(coeff(series((1+4*x+3*x^2)/(1+3*x-x^3), x, n+1), x, n), n = 0..40); # G. C. Greubel, Oct 02 2019
MATHEMATICA
Transpose[NestList[{#[[2]], Last[#], First[#]-3Last[#]}&, {1, 1, 0}, 35]][[1]] (* Harvey P. Dale, Mar 13 2011 *)
LinearRecurrence[{-3, 0, 1}, {1, 1, 0}, 40] (* G. C. Greubel, Oct 02 2019 *)
PROG
(PARI) Vec((1+4*x+3*x^2)/(1+3*x-x^3)+O(x^40)) \\ Charles R Greathouse IV, Jan 17 2012
(Magma) R<x>:=PowerSeriesRing(Integers(), 40); Coefficients(R!( (1+4*x+3*x^2)/(1+3*x-x^3) )); // G. C. Greubel, Oct 02 2019
(Sage)
def A122099_list(prec):
P.<x> = PowerSeriesRing(ZZ, prec)
return P((1+4*x+3*x^2)/(1+3*x-x^3)).list()
A122099_list(40) # G. C. Greubel, Oct 02 2019
(GAP) a:=[1, 1, 0];; for n in [4..40] do a[n]:=-3*a[n-1]+a[n-3]; od; a; # G. C. Greubel, Oct 02 2019
CROSSREFS
Cf. A122100.
Sequence in context: A244400 A052536 A122100 * A026165 A377099 A336742
KEYWORD
sign,easy,less
AUTHOR
Philippe Deléham, Oct 18 2006
STATUS
approved