login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A122102
a(n) = Sum_{k=1..n} prime(k)^4.
16
16, 97, 722, 3123, 17764, 46325, 129846, 260167, 540008, 1247289, 2170810, 4044971, 6870732, 10289533, 15169214, 23059695, 35177056, 49022897, 69174018, 94585699, 122983940, 161934021, 209392342, 272134583, 360663864, 464724265, 577275146, 708354747, 849512908
OFFSET
1,1
COMMENTS
a(n) is prime for n = {2,32,90,110,134,152,168,180,194,...} = A122127.
FORMULA
From Vladimir Shevelev, Aug 02 2013: (Start)
a(n) = 0.2*n^5*log(n)^4 + O(n^5*log(n)^3*log(log(n))). The proof is similar to proof for A007504(n) (see link of Shevelev).
A generalization: Sum_{i=1..n} prime(i)^k = 1/(k+1)*n^(k+1)*log(n)^k + O(n^(k+1)*log(n)^(k-1)*log(log(n))).
(End)
MAPLE
seq(add(ithprime(k)^4, k=1..n), n=1..30); # G. C. Greubel, Oct 02 2019
MATHEMATICA
Table[Sum[Prime[k]^4, {k, 1, n}], {n, 1, 100}]
Accumulate[Prime[Range[30]]^4] (* Harvey P. Dale, Aug 07 2021 *)
PROG
(PARI) a(n)=my(s); forprime(p=2, prime(n), s+=p^4); s \\ Charles R Greathouse IV, Aug 02 2013
(Magma) [&+[NthPrime(k)^4: k in [1..n]]: n in [1..30]]; // G. C. Greubel, Oct 02 2019
(Sage) [sum(nth_prime(k)^4 for k in (1..n)) for n in (1..30)] # G. C. Greubel, Oct 02 2019
CROSSREFS
Partial sums of A030514.
Sequence in context: A248883 A223902 A264580 * A214612 A283545 A297684
KEYWORD
nonn
AUTHOR
Alexander Adamchuk, Aug 20 2006
STATUS
approved