The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A122102 a(n) = Sum_{k=1..n} prime(k)^4. 16
 16, 97, 722, 3123, 17764, 46325, 129846, 260167, 540008, 1247289, 2170810, 4044971, 6870732, 10289533, 15169214, 23059695, 35177056, 49022897, 69174018, 94585699, 122983940, 161934021, 209392342, 272134583, 360663864, 464724265, 577275146, 708354747, 849512908 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS a(n) is prime for n = {2,32,90,110,134,152,168,180,194,...} = A122127. LINKS Vincenzo Librandi, Table of n, a(n) for n = 1..1000 FORMULA From Vladimir Shevelev, Aug 02 2013: (Start) a(n) = 0.2*n^5*log(n)^4 + O(n^5*log(n)^3*log(log(n))). The proof is similar to proof for A007504(n) (see link of Shevelev). A generalization: Sum_{i=1..n} prime(i)^k = 1/(k+1)*n^(k+1)*log(n)^k + O(n^(k+1)*log(n)^(k-1)*log(log(n))). (End) MAPLE seq(add(ithprime(k)^4, k=1..n), n=1..30); # G. C. Greubel, Oct 02 2019 MATHEMATICA Table[Sum[Prime[k]^4, {k, 1, n}], {n, 1, 100}] Accumulate[Prime[Range[30]]^4] (* Harvey P. Dale, Aug 07 2021 *) PROG (PARI) a(n)=my(s); forprime(p=2, prime(n), s+=p^4); s \\ Charles R Greathouse IV, Aug 02 2013 (Magma) [&+[NthPrime(k)^4: k in [1..n]]: n in [1..30]]; // G. C. Greubel, Oct 02 2019 (Sage) [sum(nth_prime(k)^4 for k in (1..n)) for n in (1..30)] # G. C. Greubel, Oct 02 2019 CROSSREFS Cf. A007504, A024450, A098999, A122103, A122127. Partial sums of A030514. Sequence in context: A248883 A223902 A264580 * A214612 A283545 A297684 Adjacent sequences: A122099 A122100 A122101 * A122103 A122104 A122105 KEYWORD nonn AUTHOR Alexander Adamchuk, Aug 20 2006 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified March 28 23:19 EDT 2023. Contains 361596 sequences. (Running on oeis4.)