login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = Sum_{k=1..n} prime(k)^4.
16

%I #31 Jan 02 2023 12:30:46

%S 16,97,722,3123,17764,46325,129846,260167,540008,1247289,2170810,

%T 4044971,6870732,10289533,15169214,23059695,35177056,49022897,

%U 69174018,94585699,122983940,161934021,209392342,272134583,360663864,464724265,577275146,708354747,849512908

%N a(n) = Sum_{k=1..n} prime(k)^4.

%C a(n) is prime for n = {2,32,90,110,134,152,168,180,194,...} = A122127.

%H Vincenzo Librandi, <a href="/A122102/b122102.txt">Table of n, a(n) for n = 1..1000</a>

%H OEIS Wiki, <a href="https://oeis.org/wiki/Sums_of_primes_divisibility_sequences">Sums of powers of primes divisibility sequences</a>

%H V. Shevelev, <a href="http://list.seqfan.eu/oldermail/seqfan/2013-August/011512.html">Asymptotics of sum of the first n primes with a remainder term</a>

%F From _Vladimir Shevelev_, Aug 02 2013: (Start)

%F a(n) = 0.2*n^5*log(n)^4 + O(n^5*log(n)^3*log(log(n))). The proof is similar to proof for A007504(n) (see link of Shevelev).

%F A generalization: Sum_{i=1..n} prime(i)^k = 1/(k+1)*n^(k+1)*log(n)^k + O(n^(k+1)*log(n)^(k-1)*log(log(n))).

%F (End)

%p seq(add(ithprime(k)^4, k=1..n), n=1..30); # _G. C. Greubel_, Oct 02 2019

%t Table[Sum[Prime[k]^4,{k,1,n}],{n,1,100}]

%t Accumulate[Prime[Range[30]]^4] (* _Harvey P. Dale_, Aug 07 2021 *)

%o (PARI) a(n)=my(s);forprime(p=2,prime(n),s+=p^4); s \\ _Charles R Greathouse IV_, Aug 02 2013

%o (Magma) [&+[NthPrime(k)^4: k in [1..n]]: n in [1..30]]; // _G. C. Greubel_, Oct 02 2019

%o (Sage) [sum(nth_prime(k)^4 for k in (1..n)) for n in (1..30)] # _G. C. Greubel_, Oct 02 2019

%Y Cf. A007504, A024450, A098999, A122103, A122127.

%Y Partial sums of A030514.

%K nonn

%O 1,1

%A _Alexander Adamchuk_, Aug 20 2006