login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A178345
a(n)= 2^A006218(n)/( (n!)^2 *sum_{m=0..n} 1/(m!*(2n-m+1)!) ) .
1
1, 3, 15, 70, 630, 2772, 48048, 205920, 3500640, 29560960, 496624128, 2076791808, 138452787200, 575111577600, 9530420428800, 157569617756160, 5199797385953280, 21410930412748800, 1408363422705254400
OFFSET
0,2
FORMULA
a(n)= 2^A006218(n)/sum_{m=0..n} Beta(n+1,n-m+1)*binomial(n,m) ) , where Beta(x,y)= Gamma(x)*Gamma(y)/Gamma(x+y).
MAPLE
A006218 := proc(n) add( floor(n/i), i=1..n) ; end proc:
A178345 := proc(n) n!^2*add( 1/(2*n-m+1)!/m!, m=0..n) ; 2^A006218(n)/% ; end proc:
seq(A178345(n), n=0..10) ;
MATHEMATICA
a[n_] = 1/(Sum[Beta[ n + 1, n - m + 1]*Binomial[n, m], {m, 0, n}]*(1/2)^(Sum[ Floor[n/i], {i, 1, n}]));
Table[a[n], {n, 0, 20}]
CROSSREFS
Cf. A001803.
Sequence in context: A291031 A359405 A009174 * A183547 A123942 A357161
KEYWORD
nonn
AUTHOR
Roger L. Bagula, May 25 2010
STATUS
approved