login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A178346
Triangle read by rows: T(n, k, m) = binomial(n, k) - m*binomial(n, k)*binomial(n+1, k)/(k+1) + m*A008292(n+1, k+1) with m = 3.
1
1, 1, 1, 1, 5, 1, 1, 18, 18, 1, 1, 52, 144, 52, 1, 1, 131, 766, 766, 131, 1, 1, 303, 3273, 6743, 3273, 303, 1, 1, 664, 12312, 45422, 45422, 12312, 664, 1, 1, 1406, 42844, 261230, 463348, 261230, 42844, 1406, 1, 1, 2913, 141936, 1358100, 3915312, 3915312, 1358100, 141936, 2913, 1, 1, 5953, 455481, 6595734, 29172972, 47114784, 29172972, 6595734, 455481, 5953, 1
OFFSET
0,5
FORMULA
T(n, k, m) = binomial(n, k) - m*binomial(n, k)*binomial(n+1, k)/(k+1) + m*Eulerian(n+1, k+1) with m = 3, and Eulerian(n,k) = A008292(n,k).
Sum_{k=0..n} T(n, k) = 2^n + 3*(n+1)! - 3*Catalan(n+1) = 2^n + 3*A056986(n+1). - G. C. Greubel, Oct 05 2024
EXAMPLE
Triangle begins as:
1;
1, 1;
1, 5, 1;
1, 18, 18, 1;
1, 52, 144, 52, 1;
1, 131, 766, 766, 131, 1;
1, 303, 3273, 6743, 3273, 303, 1;
1, 664, 12312, 45422, 45422, 12312, 664, 1;
1, 1406, 42844, 261230, 463348, 261230, 42844, 1406, 1;
1, 2913, 141936, 1358100, 3915312, 3915312, 1358100, 141936, 2913, 1;
MATHEMATICA
EulerianNumber[n_, k_] := EulerianNumber[n, k] = Sum[(-1)^j*(k-j)^n*Binomial[n+ 1, j], {j, 0, k}];
A178346[n_, k_, m_]:= Binomial[n, k] - m*Binomial[n, k]*Binomial[n+1, k]/(k+1) + m*EulerianNumber[n+1, k+1];
Table[A178346[n, k, 3], {n, 0, 15}, {k, 0, n}]//Flatten
PROG
(Magma)
A178346:= func< n, k | Binomial(n, k) - 3*(Binomial(n, k)*Binomial(n+1, k)/(k+1)) + 3*EulerianNumber(n+1, k) >;
[A178346(n, k): k in [0..n], n in [0..15]]; // G. C. Greubel, Oct 05 2024
(SageMath)
def A008292(n, k): return sum((-1)^j*binomial(n+1, j)*(k-j)^n for j in (0..k))
def A178346(n, k): return binomial(n, k) - 3*binomial(n, k)*binomial(n+1, k)/(k+1) + 3*A008292(n+1, k+1)
flatten([[A178346(n, k) for k in range(n+1)] for n in range(16)]) # G. C. Greubel, Oct 05 2024
CROSSREFS
Cf. A008292.
Sequence in context: A347974 A029847 A154334 * A168551 A262307 A144397
KEYWORD
nonn,tabl
AUTHOR
Roger L. Bagula, May 25 2010
EXTENSIONS
Edited by G. C. Greubel, Oct 05 2024
STATUS
approved