login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A123944
Numbers n such that A120301(n) differs from A058313(n).
1
19, 28, 87, 99, 104, 196, 203, 210, 222, 228, 231, 238, 281, 328, 367, 499, 579, 620, 888, 967, 1036, 1147, 1204, 1352, 1372, 1403, 1419, 1430, 1470, 1481, 1498, 1503, 1666, 1693, 1907, 2211, 2359, 2440, 2499, 2521, 2556, 2678, 2948, 3407, 3467, 3504, 3537, 3892, 4046, 4079, 4108
OFFSET
1,1
COMMENTS
The ratio A120301(n)/A058313(n) = 1 for most n.
The ratio A120301(a(n))/A058313(a(n)) = {5, 7, 11, 5, 13, 7, 17, 7, 37, 10, 29, 119, 47, 41, 23, 5, 29, 31, 37, 11, 37, 41, 43, 13, 7, 13, 71, 13, 49, 13, 7,...} is prime for the most a(n).
The first composite ratio A120301(a(n))/A058313(a(n)) corresponds to a(n) = a(29) = 1470 because A120301(1470)/A058313(1470) = 49 = 7^2. [Edited by Petros Hadjicostas, May 09 2020]
MATHEMATICA
f=0; Do[f=f+(-1)^(n+1)*1/n; g=Abs[(2(-1)^n*n+(-1)^n-1)/4]*f; rfg=Numerator[g]/Numerator[f]; If[(rfg==1)==False, Print[{n, rfg}]], {n, 1, 15000}]
PROG
(PARI) isok(n) = my(sn = sum(k=1, n, (-1)^(k+1)/k)); numerator(sn) != abs(numerator((-1/4) * (2*(-1)^n*n + (-1)^n - 1)*sn));
for (n=1, 4200, if (isok(n), print1(n, ", "))); \\ Michel Marcus, May 10 2020
CROSSREFS
Sequence in context: A120144 A255924 A067452 * A095046 A166667 A121458
KEYWORD
nonn
AUTHOR
Alexander Adamchuk, Nov 22 2006
EXTENSIONS
a(47)-a(51) from Petros Hadjicostas, May 09 2020
STATUS
approved