login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = Sum_{k = 0..n} binomial(n+k-1,k) * Sum_{k = 0..n} binomial(n+k-1,k)^2.
5

%I #27 Aug 02 2023 07:18:43

%S 1,4,84,2920,121940,5607504,273908712,13947188112,732102614100,

%T 39332168075200,2152235533317584,119531412173662944,

%U 6720552415489860584,381775182057562837600,21879043278489630349200,1263402662473729731877920,73438613319490294002441300,4293679728171938162242298400

%N a(n) = Sum_{k = 0..n} binomial(n+k-1,k) * Sum_{k = 0..n} binomial(n+k-1,k)^2.

%C Conjectures:

%C 1) a(p) == 4 (mod p^5) for all odd primes p except p = 5 (checked up to p = 499). Note that both A000984(p) == 2 (mod p^3) and A333592(p) == 2 (mod p^3) for all primes p >= 5 and hence a(p) == 4 (mod p^3) for all primes p >= 5.

%C 2) For r >= 2, and all primes p >= 3, a(p^r) == a(p^(r-1)) ( mod p^(3*r+3) ).

%C 3) More generally, let m be a positive integer and set u(n) = ( Sum_{k = 0..m*n} binomial(n+k-1,k) )^(2*m) * ( Sum_{k = 0..m*n} binomial(n+k-1,k)^2 )^(m+1). Then the sequence {u(n)} satisfies the supercongruence u(p) == u(1) (mod p^5) for all primes p >= 7. See A357674 for the case m = 2.

%C 4) For r >= 2, and all primes p >= 5, u(p^r) == u(p^(r-1)) ( mod p^(3*r+3) ).

%F a(n) = A000984(n) * A333592(n).

%F a(n) ~ 2^(6*n)/(3*(Pi*n)^(3/2)).

%e Examples of supercongruences:

%e a(17) - a(1) = 4293679728171938162242298400 - 4 = (2^2)*(17^5)*3457* 218688360593678551 == 0 (mod 17^5).

%e a(5^2) - a(5) = (2^4)*(3^2)*(5^9)*7*7229*102559*465516030080883405648119 == 0 (mod 5^9).

%p seq(add(binomial(n+k-1,k), k = 0..n) * add( binomial(n+k-1,k)^2, k = 0..n), n = 0..20);

%o (PARI) a(n) = sum(k = 0, n, binomial(n+k-1,k)) * sum(k = 0, n, binomial(n+k-1,k)^2); \\ _Michel Marcus_, Oct 24 2022

%Y Cf. A000984, A333592, A357565, A357566, A357671, A357673, A357674.

%K nonn,easy

%O 0,2

%A _Peter Bala_, Oct 10 2022