login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A076451
Let w(1)=w(2)=w(3)=1, w(n) = (-1)^floor(n/2)*sign(w(n-1)-w(n-2))*w(n-3), then a(n) = 1+w(n).
0
2, 2, 2, 1, 0, 2, 1, 2, 2, 1, 2, 2, 1, 2, 0, 1, 2, 2, 1, 0, 0, 1, 2, 0, 1, 0, 0, 1, 0, 0, 1, 0, 2, 1, 0, 0, 1, 2, 2, 1, 0, 2, 1, 2, 2, 1, 2, 2, 1, 2, 0, 1, 2, 2, 1, 0, 0, 1, 2, 0, 1, 0, 0, 1, 0, 0, 1, 0, 2, 1, 0, 0, 1, 2, 2, 1, 0, 2, 1, 2, 2, 1, 2, 2, 1, 2, 0, 1, 2, 2, 1, 0, 0, 1, 2, 0, 1, 0, 0, 1, 0, 0, 1, 0, 2
OFFSET
1,1
FORMULA
A 36-periodic sequence with period (1, 0, 2, 1, 2, 2, 1, 2, 2, 1, 2, 0, 1, 2, 2, 1, 0, 0, 1, 2, 0, 1, 0, 0, 1, 0, 0, 1, 0, 2, 1, 0, 0, 1, 2, )
From Chai Wah Wu, Jun 12 2020: (Start)
a(n) = a(n-1) - a(n-18) + a(n-19) for n > 20.
G.f.: x*(x^19 - x^18 - x^16 - x^15 + 2*x^14 - x^13 + x^12 - x^10 + x^9 - x^7 + x^6 - 2*x^5 + x^4 + x^3 - 2)/(x^19 - x^18 + x - 1). (End)
CROSSREFS
Sequence in context: A357563 A112215 A176389 * A230536 A306257 A357316
KEYWORD
nonn
AUTHOR
Benoit Cloitre, Nov 24 2002
STATUS
approved