login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A076454 Sum of numbers that can be written as t*n + u*(n+1) for nonnegative integers t,u in exactly one way. 9
1, 21, 102, 310, 735, 1491, 2716, 4572, 7245, 10945, 15906, 22386, 30667, 41055, 53880, 69496, 88281, 110637, 136990, 167790, 203511, 244651, 291732, 345300, 405925, 474201, 550746, 636202, 731235, 836535, 952816, 1080816, 1221297, 1375045, 1542870, 1725606, 1924111 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

This sequence is related to A007585 by a(n) = n*A007585(n)-sum(i=0..n-1, A007585(i)). - Vincenzo Librandi, Aug 08 2010

In fact, this is the case d=4 in the identity n*(n*(n+1)*(2*d*n-2*d+3)/6)-sum(k*(k+1)*(2*d*k-2*d+3)/6, k=0..n-1) = n*(n+1)*(3*d*n^2-d*n+4*n-2*d+2)/12. - Bruno Berselli, Mar 01 2012

Bisection of A233329 (up to an offset). - L. Edson Jeffery, Jan 23 2014

REFERENCES

Fred. Schuh, Vragen betreffende een onbepaalde vergelijking, Nieuw Tijdschrift voor Wiskunde, 52 (1964-1965) 193-198.

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 1..1000

B. Berselli, A description of the recursive method in Comments lines: website Matem@ticamente (in Italian).

FORMULA

a(n) = n*(n+1)*(2*n^2-1)/2.

G.f.: x*(1+16*x+7*x^2)/(1-x)^5.

a(n) = 5*a(n-1)-10*a(n-2)+10*a(n-3)-5*a(n-4)+a(n-5), n>=6, with a(1)=1, a(2)=21, a(3)=102, a(4)=310, a(5)=735. - L. Edson Jeffery, Dec 30 2013

MAPLE

seq(1/2*n*(n+1)*(2*n^2-1), n=1..40);

MATHEMATICA

CoefficientList[Series[(1 + 16 x + 7 x^2)/(1 - x)^5, {x, 0, 50}], x] (* Vincenzo Librandi, Dec 30 2013 *)

PROG

(MAGMA) [n*(n+1)*(2*n^2-1)/2: n in [1..50]]; // Vincenzo Librandi, Dec 30 2013

CROSSREFS

Cf. A002417, A007585, A076455-A076459, A233329.

Sequence in context: A157329 A044272 A044653 * A208538 A303681 A304132

Adjacent sequences:  A076451 A076452 A076453 * A076455 A076456 A076457

KEYWORD

nonn,easy

AUTHOR

Floor van Lamoen, Oct 13 2002

EXTENSIONS

Comments rewritten from Bruno Berselli, Mar 01 2012

More terms from Vincenzo Librandi, Dec 30 2013

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 23 20:42 EDT 2021. Contains 347617 sequences. (Running on oeis4.)